Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-26T02:00:27.007Z Has data issue: false hasContentIssue false

Revised crystallographic data of K2MgGeO4 and K2CdGeO4 compounds

Published online by Cambridge University Press:  10 January 2013

C. Colbeau-Justin
Affiliation:
Laboratoire de Cristallochimie du Solide, CNRS-URA 1388, Université P. et M. Curie, 4 place Jussieu, 75252 Paris Cedex 05, France
G. Wallez
Affiliation:
Laboratoire de Cristallochimie du Solide, CNRS-URA 1388, Université P. et M. Curie, 4 place Jussieu, 75252 Paris Cedex 05, France
A. Elfakir
Affiliation:
Laboratoire de Cristallochimie du Solide, CNRS-URA 1388, Université P. et M. Curie, 4 place Jussieu, 75252 Paris Cedex 05, France
M. Quarton
Affiliation:
Laboratoire de Cristallochimie du Solide, CNRS-URA 1388, Université P. et M. Curie, 4 place Jussieu, 75252 Paris Cedex 05, France

Abstract

The two germanates K2MgGeO4 and K2CdGeO4 have been synthesized by solid-state reaction. These compounds are isostructural with K2ZnGeO4, space group Pca21 (No. 29), Z=8. Unit cell parameters were determined: for K2MgGeO4a=11.1810(11), b=5.5708(6), c=15.8694(16) Å, V=988.5(3) Å3 and for K2CdGeO4a=11.4777(24), b=5.7155(7), c=16.1732(17) Å, V=1061.0(5) Å3. Powder diffraction data are reported.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Colbeau-Justin, C. (1996) Ph.D. thesis “Cristollochimie et Propriétés Non Linéaires de Nouveaux Composés à Structures Cristobalite et Tridymite Déformées,” thesis, Université Pierre et Marie Curie, Paris.Google Scholar
Colbeau-Justin, C., Elfakir, A., and Quarton, M. (1994). “A Monotitanate with a Stuffed Cristobalite Structure Type,” Powder Diffr. 9, 146147.Google Scholar
Colbeau-Justin, C., Wallez, G., Elfakir, A., and Quarton, M. (1996). “Crystal Structures of the High- and Low-Temperature Forms of K 2ZnGeO 4,” J. Solid State Chem. (accepted).Google Scholar
de Wolff, P. M. (1968). “A Simplified Criterion for the Reliability of Powder-Pattern Indexing,” J. Appl. Crystallogr. 1, 108109.Google Scholar
Dragoo, A. L. (1990). Standard reference materials for x-ray diffraction. Part I. Overview of current and future standard reference materials.Google Scholar
Grins, J., and Louër, D. (1990). “A Rietveld Refinement of the Structure of K 2ZnGeO 4 and its Relationship to a Revised Model of the KGaO 2 Structure Type,” J. Solid State Chem. 87, 114123.Google Scholar
Mighell, A. D. Hubbard, C. R., and Stalick, J. K. (1981). NBS*AIDS-83 is a development of NBS*AIDS-80, A FORTRAN Program for Crystallographic Data Evaluation, National Bureau of Standards (U.S.) Technical Note No. 1141.Google Scholar
Shannon, R. D. (1976). “Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides,” Acta Crystallogr. Sec. A 32, 751767.Google Scholar
Smith, G. J., and Snyder, R. L. (1979). “F N: A Criterion for Rating Powder Diffraction Patterns and Evaluating the Reliability of Powder-Pattern Indexing,” J. Appl. Crystallogr. 12, 6065.Google Scholar
Torres-Martinez, L. M., and West, A. R. (1988). “Synthesis of New Phases, K 2MXO 4: MX=BeSi, MgGe, CdSi, CdGe and ZnSi,” J. Mater. Sci. Lett. 7, 821822.CrossRefGoogle Scholar