Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T13:29:29.520Z Has data issue: false hasContentIssue false

Residual stresses in novel metal/ceramic composites exhibiting a lamellar microstructure

Published online by Cambridge University Press:  06 March 2012

Siddhartha Roy
Affiliation:
Institut für Werkstoffkunde I, Universitât Karlsruhe (TH), 76128 Karlsruhe, Germany
Jens Gibmeier
Affiliation:
Institut für Werkstoffkunde I, Universitât Karlsruhe (TH), 76128 Karlsruhe, Germany
Alexander Wanner
Affiliation:
Institut für Werkstoffkunde I, Universitât Karlsruhe (TH), 76128 Karlsruhe, Germany

Abstract

The aim of this study is to analyze the mechanics of a new class of metal/ceramic composites on a mesoscopic length scale. These composites are produced by melt infiltration of porous ceramic preforms produced by freeze casting and subsequent sintering. This production route has a high application potential since it offers a cost-effective way to obtain composites with ceramic content in the 30 to 70 vol. % range. The as-produced material exhibits a hierarchical domain structure with each domain composed of alternating layers of metallic and ceramic lamellae. Residual stresses present in all phases of the composite produced by infiltrating alumina preforms with a eutectic aluminum-silicon alloy have been measured. Integral as well as spatially resolved measurements were carried out on single-domain samples at the high-energy, energy-dispersive diffraction (EDDI) beamline at the synchrotron radiation source BESSY (Berlin, Germany). Results show that strongly fluctuating residual stresses are introduced by the production process, which can be rationalized by taking into account the thermal expansion mismatch of alloy and preform.

Type
Applications Of Residual Stress Analysis
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arsenault, R. J. and Taya, M. (1987). “Thermal residual-stress in metal matrix composite,” Acta Metall.AMETAR 35, 651659.10.1016/0001-6160(87)90188-XCrossRefGoogle Scholar
Berthelot, J. M. (1999). Composite Materials: Mechanical Behavior and Structural Analysis (Springer, New York).CrossRefGoogle Scholar
Clyne, T. W. and Withers, P. J. (1993). An Introduction to Metal Matrix Composites (Cambridge University Press, Cambridge, England).CrossRefGoogle Scholar
Daymond, M. R. (2004). “The determination of a continuum mechanics equivalent elastic strain from the analysis of multiple diffraction peaks,” J. Appl. Phys.JAPIAU 96, 42634272.10.1063/1.1794896CrossRefGoogle Scholar
Deville, S., Saiz, E., Nalla, R. K., and Tomsia, A. P. (2006). “Freezing as a path to build complex composites,” ScienceSCIEAS 311, 515518.10.1126/science.1120937CrossRefGoogle ScholarPubMed
Deville, S., Saiz, E., and Tomsia, A. P. (2007). “Ice-templated porous alumina structures,” Acta Mater.ACMAFD 55, 1965–74.10.1016/j.actamat.2006.11.003CrossRefGoogle Scholar
Fitzpatrick, M. E. and Lodini, A. (2003). Analysis of Residual Stress by Diffraction Using Neutron and Synchrotron Radiation (Taylor & Francis, New York).CrossRefGoogle Scholar
Genzel, Ch., Denks, I. A., Gibmeier, J., Klaus, M., and Wagener, G. (2007). “The materials science synchrotron beamline EDDI for energy-dispersive diffraction analysis,” Nucl. Instrum. Methods Phys. Res. ANIMAER 578, 2333.10.1016/j.nima.2007.05.209CrossRefGoogle Scholar
Lloyd, D. J. (1994). “Particle-reinforced aluminium and magnesium matrix composites,” Int. Mater. Rev.INMREO 39, 123.CrossRefGoogle Scholar
Macherauch, E. and Müller, P. (1961). “Das sin2ψ-Verfahren der röntgenographischen Spannungsmessung” (The sin2ψ method for measuring stresses by means of x-rays), Z. Angew. Phys.ZAPHAX 13, 305312.Google Scholar
Mattern, A. (2005). “Interpenetrierende metall-keramik-verbundwerkstoffe mit isotropen und anisotropen aluminiumoxid-verstärkungen (Interpenetrating metal-ceramic composites with isotropic and anisotropic alumina reinforcements),” Ph.D. thesis, Universität Karlsruhe (TH), Karlsruhe, Germany (in German).Google Scholar
Prielipp, H., Knechtel, M., Claussen, N., Streiffer, S. K., Müllejans, H., and Rühle, M. (1995). “Strength and fracture toughness of aluminium/alumina composites with interpenetrating networks,” Mater. Sci. Eng., AMSAPE3 197, 1930.10.1016/0921-5093(94)09771-2CrossRefGoogle Scholar
Pyzalla, A. (2000). “Methods and feasibility of residual stress analysis by high-energy synchrotron radiation in transmission geometry using a white beam,” J. Nondestruct. Eval.JNOED5 19, 2131.10.1023/A:1006664007726CrossRefGoogle Scholar
Roy, S., Butz, B., and Wanner, A. (2008). “Damage evolution and anisotropy in freeze cast metal/ceramic composites: An in situ SEM analysis,” 13th European Conference on Composite Materials (ECCM13), Stockholm, Sweden, paper 0303.Google Scholar
Roy, S. and Wanner, A. (2008). “Metal/ceramic composites from freeze-cast ceramic preforms: Domain structure and elastic properties,” Compos. Sci. Technol.CSTCEH 68, 11361143.10.1016/j.compscitech.2007.06.013CrossRefGoogle Scholar
Roy, S., Gibmeier, J., and Wanner, A. (2009). “In situ study of internal load transfer in a novel metal/ceramic composite exhibiting lamellar microstruture using energy dispersive synchrotron X-ray diffraction,” Advanced Engineering Materials, accepted.CrossRefGoogle Scholar
Wanner, A. and Dunand, D. C. (2000). “Synchrotron X-ray study of bulk lattice strains in externally loaded Cu-Mo composites,” Metall. Mater. Trans. AMMTAEB 31, 29492962.10.1007/BF02830344CrossRefGoogle Scholar
Zahl, D. B. and McMeeking, R. M. (1991). “The influence of residual stress on the yielding of metal matrix composites,” Acta Metall.AMETAR 39, 11171122.10.1016/0956-7151(91)90199-BCrossRefGoogle Scholar
Ziegler, T., Neubrand, A., Roy, S., Wanner, A., and Piat, R. (2009). “Elastic constants of metal/ceramic composites with lamellar microstructures: Finite element modeling and ultrasonic experiments,” Compos. Sci. Technol.CSTCEH 69, 620626.10.1016/j.compscitech.2008.12.009CrossRefGoogle Scholar