Article contents
Real-space strain mapping of SOI features using microbeam X-ray diffraction
Published online by Cambridge University Press: 29 February 2012
Abstract
Synchrotron-based X-ray microbeam measurements were performed on silicon-on-insulator (SOI) features strained by adjacent shallow-trench isolation (STI). Strain engineering in microelectronic technology represents an important aspect of the enhancement in complementary metal-oxide semiconductor device performance. Because of the complexity of the composite geometry associated with microelectronic circuitry, characterization of the strained Si devices at a submicron resolution is necessary to verify the expected strain distributions. The interaction region of the SOI strain extended the SOI film thickness from the STI edge at least 25 times. Regions of 65-nm-thick SOI less than 3 μm wide exhibited an overlap in the strain fields because of the surrounding STI. Microbeam mapping of arrays containing submicron SOI features and embedded STI structures revealed the largest out-of-plane strains because of the close proximity of superimposed strain distributions induced by the STI.
- Type
- X-Ray Diffraction
- Information
- Copyright
- Copyright © Cambridge University Press 2008
References
- 1
- Cited by