Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T20:14:50.513Z Has data issue: false hasContentIssue false

Quantitative analysis with the transition edge sensor microcalorimeter X-ray detector

Published online by Cambridge University Press:  01 March 2012

Terrence Jach
Affiliation:
Surface and Microanalysis Science Division, National Institute of Standards and Technology, Boulder, Colorado 80305
Nicholas Ritchie
Affiliation:
Surface and Microanalysis Science Division, National Institute of Standards and Technology, Boulder, Colorado 80305
Joel Ullom
Affiliation:
Quantum Electronics Division, National Institute of Standards and Technology, Colorado 80305
James A. Beall
Affiliation:
Quantum Electronics Division, National Institute of Standards and Technology, Colorado 80305

Abstract

We report on the use of a microcalorimeter X-ray detector with a transition edge sensor in an electron probe to perform quantitative analysis. We analyzed two bulk samples of multielement glasses that have been previously characterized by chemical methods for use as standard reference materials. The spectra were analyzed against standards using three different correction schemes. In one of the standards, the reference line was easily resolved despite its proximity within 45 eV of another line. With the exception of direct measurements of oxygen (a particularly challenging element), the results are in agreement with the certified characterization to better than 1% absolute or 8% relative. This demonstrates the potential of microcalorimeter detectors as replacements for conventional energy dispersive detectors in applications requiring high energy resolution.

Type
X-Ray Fluorescence
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bastin, G. F., Dijkstra, J. M., and Heijligers, H. J. M. (1998). “PROZA96: an improved matrix correction program for electron probe microanalysis, based on a double Gaussian φ(ρz) approach,” X-Ray Spectrom.XRSPAX10.1002/(SICI)1097-4539(199801/02)27:1<3::AID-XRS227>3.3.CO;2-C 27, 310.3.0.CO;2-L>CrossRefGoogle Scholar
Bastin, G. F., Oberndorff, P. J. T. L., Dijkstra, J. M., and Heijligers, H. J. M. (2001). “Extension of PROZA96 to conditions of non-perpendicular incidence of the electron beam,” X-Ray Spectrom.XRSPAX 30, 382387.CrossRefGoogle Scholar
Deslattes, R. D., Kessler, E. G., Indelicato, P., de Billy, L., Lindroth, E., and Anton, J. (2003). “X-ray transition energies: new approach to a comprehensive evaluation,” Rev. Mod. Phys.RMPHAT10.1103/RevModPhys.75.35 75, 3599.CrossRefGoogle Scholar
Doriese, W. B., Beall, J. A., Duncan, W. D., Ferreira, L., Hilton, G. C., Irwin, K. D., Reintsema, C. D., Ullom, J. N., Vale, L. R., and Xu, Y. (2006). “Progress toward kilopixel arrays: 3.8 eV microcalorimeter resolution in 8-channel SQUID multiplexer,” Nucl. Instrum. Methods Phys. Res. ANIMAER 559, 808810.CrossRefGoogle Scholar
Irwin, K. D., Hilton, G. C., Wollman, D. A., and Martinis, J. M. (1998). “Thermal-response time of superconducting transition-edge microcalorimeters,” J. Appl. Phys.JAPIAU10.1063/1.367153 83, 39783985.CrossRefGoogle Scholar
Irwin, K. D., Hilton, G. C., Martinis, J. M., Deiker, S., Bergren, N., Nam, S. W., Rudman, D. A., and Wollman, D. A. (2000). “A Mo-Cu superconducting transition-edge microcalorimeter with 4.5 eV energy resolution at 6 keV,” Nucl. Instrum. Methods Phys. Res. ANIMAER10.1016/S0168-9002(99)01354-6 444, 184187.CrossRefGoogle Scholar
Isaila, C., Feilitzsch, F. v., Höhne, J., Hollerith, C., Phelan, K., Simmnacher, B., Weiland, R., and Wernicke, D. (2006). “X-ray microanalysis with microcalorimeters,” Nucl. Instrum. Methods Phys. Res. ANIMAER 559, 734736.CrossRefGoogle Scholar
Jach, T., Small, J. A., and Newbury, D. E. (2005). “Improving energy stability in the National Institute of Standards and Technology microcalorimeter X-ray detector,” Adv. X-Ray Anal.AXRAAA 48, 216220.Google Scholar
Kenik, E. A., Joy, D. C., and Redfern, D. (2004). “Microcalorimeter Detectors and Low Voltage SEM Microanalysis,” Microchim. Acta 145, 8185.CrossRefGoogle Scholar
McCammon, D., Cui, W., Juda, M., Plucinsky, P., Zhang, J., Kelley, R. L., Holt, S. S., Madejski, G. M., Moseley, S. H., and Szymkowiak, A. E. (1991). “Cryogenic microcalorimeters for high resolution spectroscopy: current status and future prospects,” Nucl. Phys. ANUPABL10.1016/0375-9474(91)90238-2 527, 821824.CrossRefGoogle Scholar
NIST (1981). Certificate of Analysis, Standard Reference Material 470, Mineral Glasses for Microanalysis (National Institute of Standards and Technology, Gaithersburg, MD), 〈http://ts.nist.gov/MeasurementServices/ReferenceMaterials/ARCHIVED_CERTIFICATES/470.pdf〉.Google Scholar
NIST (1984). Certificate of Analysis, Standard Reference Material 1873 (National Institute of Standards and Technology, Gaithersburg, MD).Google Scholar
Pouchou, J. L., Pichoir, F., and Boivin, D. (1989). “Further improvements in quantitation procedures for X-ray microanalysis,” The 12th International Congress on X-ray Optics and Microanalysis, Cracow, Poland, August–September 1989.CrossRefGoogle Scholar
Ritchie, N. W. M. (2005). “A new Monte Carlo application for complex sample geometries,” Surf. Interface Anal.SIANDQ10.1002/sia.2093 37, 10061011.CrossRefGoogle Scholar
Wollman, D. A., Irwin, K. D., Hilton, G. C., Dulcie, L. L., Newbury, D. E., and Martinis, J. M. (1997). “High-resolution, energy-dispersive microcalorimeter spectrometer for X-ray microanalysis,” J. Microsc.JMICAR10.1046/j.1365-2818.1997.2670824.x 188, 196223.CrossRefGoogle Scholar