Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-23T05:57:08.509Z Has data issue: false hasContentIssue false

Powder-diffraction data for several solid solutions with the compositions (CaxSr1−x)CuO2 and (CaxSr1−x)2CuO3

Published online by Cambridge University Press:  10 January 2013

S. T. Misture
Affiliation:
Institute for Ceramic Superconductivity, New York State College of Ceramics at Alfred University, Alfred, New York 14802
C. Park
Affiliation:
Institute for Ceramic Superconductivity, New York State College of Ceramics at Alfred University, Alfred, New York 14802
R. L. Snyder
Affiliation:
Institute for Ceramic Superconductivity, New York State College of Ceramics at Alfred University, Alfred, New York 14802
B. Jobst
Affiliation:
Siemens Corporate Research, Otto-Hahn-Ring 6, D-81730 Munich, Germany
B. Seebacher
Affiliation:
Siemens Corporate Research, Otto-Hahn-Ring 6, D-81730 Munich, Germany

Abstract

Several compositions of the solid solutions (CaxSr1−x)CuO2 and (CaxSr1−x)2CuO3, both of which are found as minor phases in the high-temperature superconductors, were prepared by solid-state reaction. X-ray powder-diffraction patterns for three compositions of (CaxSr1−x)CuO2 and two for (CaxSr1−x)2CuO3 are presented.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hasegawa, T., Kobayashi, H., Kumakura, H., Kitaguchi, H., and Togano, K. (1994). “The Effect of Ag on the Formation of Bi2Sr2CaCu2O8 Thick Film,” Physica C 222, 111118.CrossRefGoogle Scholar
Heeb, B., Oesch, S., Bohac, P., and Gauckler, L. J. (1992). “Microstructure of Melt-Processed Bi2Sr2CaCu2O8 and Reaction Mechanisms During Post Heat Treatment,” J. Mater Res. 7 (11), 29482955.CrossRefGoogle Scholar
Holesinger, T. G., Miller, D. J., and Chumbley, L. S. (1993). “Solid Solution Region of the Bi2Sr2CaCu2O8 Superconductor,” Physica C 217, 8596.CrossRefGoogle Scholar
Hubbard, C. R., Lederman, S. M., and Pyrros, N. P. (1982). JCPDS-NBS*LSQ82, U.S. National Bureau of Standards (Private communication).Google Scholar
Matheis, D. P., Misture, S. T., and Snyder, R. L. (1993). “Melt-Texture Processing and High-Temperature Reactions of Bi2Sr2CaCu2O8 Thick Films,” Physica C 217, 319324.CrossRefGoogle Scholar
Misture, S. T., Matheis, D. P., Blanton, T. N., Zorn, G. M., Seebacher, B., and Snyder, R. L. (1995). “High-Temperature X-Ray Diffraction Study of the Peritectic Reactions of Bi-2212 With and Without Ag Additions,” Physica C 250, 175183.CrossRefGoogle Scholar
Müller, R., Schweizer, T., Bohac, P., Suzuki, R. O., and Gauckler, L. J. (1992). “Compositional Range of the Bi2Sr2CaCu2O8 HT C-Superconductor and its Surrounding Phases,” Physica C 203, 299314.CrossRefGoogle Scholar
Oka, Y., Yamamota, N., Tomii, Y., Kitaguchi, H., Oda, K., and Takada, J. (1989). “Crystalline Phases Formed in the Partially Melted States of Bi–Sr–Ca–Cu–O,” Jpn. J. Appl. Phys. 28 (2), L801803.CrossRefGoogle Scholar
Polonka, J., Xu, M., Li, Q., Goldman, A. I., and Finnemore, D. K. (1991). “In-Situ X-Ray Investigation of the Melting of Bi–Sr–Ca–Cu–O Phases,” Appl. Phys. Lett. 59 (27), 3640–42.CrossRefGoogle Scholar
Rao, C. N. R., Nagarajan, R., and Vijayaraghavan, R. (1993). “Synthesis of Cuprate Superconductors,” Supercond. Sci. Technol. 6, 122.CrossRefGoogle Scholar
Ray, R. D., and Hellstrom, E. E. (1991). “Ag-Clad Bi–Sr–Ca–Cu–O Wires II. Important Factors in Supersolidus Phase Studies,” Physica C 175, 255260.CrossRefGoogle Scholar
Reardon, B. J., and Hubbard, C. R., (1992a). “A Comprehensive Review of the XRD Data of the Primary and Secondary Phases Present in the BSCCO Superconductor System,” Oak Ridge National Laboratory Report ORNL/TM-11948.CrossRefGoogle Scholar
Reardon, B. J., and Hubbard, C. R. (1992b). “A Review of the Phases Present in the CaO–SrO–PbO System,” Powder Diffr. 8 (2), 9698.CrossRefGoogle Scholar
Roth, R. S., Rawn, C. J., Ritter, J. J., and Burton, B. P. (1989). “Phase Equilibria of the System SrO–CaO–CuO,” J. Am. Ceram. Soc. 72 (8), 15451549.CrossRefGoogle Scholar
Shimikawa, Y., Jorgensen, J. D., Mitchell, J. F., Hunter, B. A., Shaked, H., Hinks, D. G., Hitterman, R. L., Hiroi, Z., and Takano, M. (1994). “Structural Study of Sr2CuO3+δ by Neutron Powder Diffraction,” Physica C 228, 7380.CrossRefGoogle Scholar
Smith, G. S., and Snyder, R. L. (1979). “Fn: A Criterion for Rating Powder Diffraction Patterns and Evaluating the Reliability of Powder Pattern Indexing,” J. Appl. Cryst. 12, 6065.CrossRefGoogle Scholar
Teske, C. L., and Müller-Buschbaum, H. (1970). “Zur Kenntnis von Ca2CuO3 and SrCuO2,” Z. Anorg. Allg. Chem. 379, 234241.CrossRefGoogle Scholar
Weller, M. T., and Lines, D. R. (1989). “Structure and Oxidation State Relationships in Ternary Copper Oxides,” J. Solid State Chem. 82, 2129.CrossRefGoogle Scholar
Xu, M., Voiles, E. T., Chumbley, L. S., Goldman, A. I., and Finnemore, D. K. (1992). “Synthesis and Characterization of Ceramic (CaxSr1−x)2CuO3,” J. Mater. Res. 7 (5), 12831285.CrossRefGoogle Scholar
Xu, M., Polonka, J., Goldman, A. I., Finnemore, D. K., and McKernan, S. (1993). “Growth of Precipitates in Bi2Sr2CaCu2O8,” Appl. Supercon. 1 (10–12), 15471551.CrossRefGoogle Scholar