Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-27T07:08:31.706Z Has data issue: false hasContentIssue false

Powder X-ray diffraction and Rietveld analysis of Cd1−xCuxCr2O4(0.1≤x≤0.7)

Published online by Cambridge University Press:  01 March 2012

L. Q. Yan
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing, 100080, China
Z. W. Jiang
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing, 100080, China
X. D. Peng
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing, 100080, China
L. H. He
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing, 100080, China
F. W. Wang
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing, 100080, China

Abstract

Structural properties of Cd1−xCuxCr2O4(CCCO) have been investigated by means of X-ray powder diffraction and Rietveld analysis. A structural phase transformation from Fd3m to I42d at x=0.64 has been detected. The lattice constant a of the cubic unit cell decreases rapidly with increasing Cu content up to x=0.62. At x=0.64, the cubic unit cell is compressed into a tetragonal cell and CrO6 octahedrons are distorted. With continuing Cu content increases above 0.64, the distortion of the unit cell is released slightly according to the changes in c/a. Magnetic properties of Cd1−xCuxCr2O4(x=0.1,0.3,0.5,0.7) have also been measured and are discussed.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aeppli, G., Maletta, H., Shapiro, S. M., and Abernathy, D. (1987). “Remanence on microscopic and macroscopic scales in the reentrant spin glass EuxSr1−xS,” Phys. Rev. BPRBMDO10.1103/PhysRevB.36.3956 36, 39563959.CrossRefGoogle ScholarPubMed
Anderson, P. W. (1950a). “Antiferromagnetism. Theory of superexchange interaction,” Phys. Rev.PHRVAO10.1103/PhysRev.79.350 79, 350356.CrossRefGoogle Scholar
Anderson, P. W. (1950b). “Generalizations of the Weiss molecular field theory of antiferromagnetism,” Phys. Rev.PHRVAO10.1103/PhysRev.79.705 79, 705710.CrossRefGoogle Scholar
Anderson, P. W. (1956). “Ordering and antiferromagnetism in ferrites,” Phys. Rev.PHRVAO10.1103/PhysRev.102.1008 102, 10081013.CrossRefGoogle Scholar
Chun, S. H., Lyanda-Geller, Y., Salamon, M. B., Suryanarayanan, R., Dhalenne, G., and Revcolevschi, A. (2001). “Reentrant spin glass behavior in layered manganite La1.2Sr1.8Mn2O7 single crystals,” J. Appl. Phys.JAPIAU10.1063/1.1419260 90, 63076311.CrossRefGoogle Scholar
de Seze, L. (1977). “Antiferromagnetic dilute bond Ising model exhibiting a spin-glass phase transition,” J. Phys. CJPSOAW10.1088/0022-3719/10/12/004 10, L353L356.CrossRefGoogle Scholar
Fiorani, D., Viticoli, S., Dormann, J. L., Tholence, J. L., Hammann, J., Murani, A. P., and Soubeyroux, J. L. (1983). “Magnetic phase diagram of ZnCr2xGa2−2xO4 spinels: an antiferromagnetic frustrated lattice,” J. Phys. CJPSOAW10.1088/0022-3719/16/16/019 16, 31753182.CrossRefGoogle Scholar
Greedan, J. E. (2001). “Geometrically frustrated magnetic materials,” J. Mater. Chem.JMACEP10.1039/b003682j 11, 3753.CrossRefGoogle Scholar
Lee, S.-H., Broholm, C., Ratcliff, W., Gasparovic, G., Huang, Q., Kim, T. H., and Cheong, S.-W. (2002). “Emergent excitations in a geometrically frustrated magnet,” Nature (London)NATUAS10.1038/nature00964 418, 856858.CrossRefGoogle Scholar
Martinho, H., Moreno, N. O., Sanjurjo, J. A., Rettori, C., García-Adeva, A. J., Huber, D. L., Oseroff, S. B., Ratcliff, W. II, Cheong, S.-W., Pagliuso, P. G., Sarrao, J. L., and Martins, G. B. (2001). “Magnetic properties of the frustrated antiferromagnetic spinel ZnCr2O4 and the spin-glass Zn1−xCdxCr2O4 (x=0.05, 0.10),” Phys. Rev. BPRBMDO10.1103/PhysRevB.64.024408 64, 024408-1.CrossRefGoogle Scholar
Matsuda, M., Takeda, M., Nakamura, M., Kakurai, K., Oosawa, A., Lelièvre-Berna, E., Chung, J.-H., Ueda, H., Takagi, H., and Lee, S.-H. (2007). “Spiral spin structure in the Heisenberg pyrochlore magnet CdCr2O4,” Phys. Rev. BPRBMDO10.1103/PhysRevB.75.104415 75, >104415-1.CrossRefGoogle Scholar
Rodríguez-Carvajal, J. (2003). “FullProf: A program for Rietveld refinement and pattern matching analysis, Version 2.45,” (Computer Software), Laboratories Léon Brillouin (CEA-CNRS), Saclay, France.Google Scholar
Ueda, H., Katori, H. A., Mitamura, H., Goto, T., and Takagi, H. (2005). “Magnetic-field induced transition to the 1/2 magnetization plateau state in the geometrically frustrated magnet CdCr2O4,” Phys. Rev. Lett.PRLTAO10.1103/PhysRevLett.94.047202 94, 047202-1.CrossRefGoogle Scholar
Villain, J. (1979). “Insulating spin glasses,” Z. Phys. BZPBBDJ10.1007/BF01325811 33, 3142.CrossRefGoogle Scholar