Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T09:43:28.723Z Has data issue: false hasContentIssue false

Powder diffraction study of arsenic-substituted nasicon structures MeZr2As(3−x)PxO12 (Me=Na+, K+)

Published online by Cambridge University Press:  10 January 2013

D. Mazza
Affiliation:
Dipartimento di Scienza dei Materiali e Ingegneria Chimica—Politecnico di Torino, Italy
M. Lucco-Borlera
Affiliation:
Dipartimento di Scienza dei Materiali e Ingegneria Chimica—Politecnico di Torino, Italy
S. Ronchetti
Affiliation:
Dipartimento di Scienza dei Materiali e Ingegneria Chimica—Politecnico di Torino, Italy

Abstract

Three new mixed oxides having the nasicon structure and containing arsenic(V) as tetrahedral ion were prepared and X-ray analyzed. The stoichiometry of the three phases can be expressed by the comprehensive notation MeZr2As(3−x)PxO12 where Me stands for Na+ or K+, x equals to 0 and 1.5 when Me=Na, while x equals to 1.5 when Me=K. For two other compositions of the above series, the powder patterns were calculated on the basis of the structural data from single crystal determinations, thus permitting us to complete the characterization of the solids, with nasicon framework, deriving from MeZr2P3O12 (Me=Na+, K+) by partial (50%) or complete (100%) substitution of As for P.

Key words: nasicon, ionic conductors, phosphates, arsenates

Type
Research Article
Copyright
Copyright © Cambridge University Press 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alami, M., Brochu, R., Soubeyroux, J. L., Grarereau, P., Le Flem, G., and Hagenmueller, P. (1991). “Structure and thermal expansion of LiGe 2(PO 4)3,”J. Solid State Chem. B 90, 185193.Google Scholar
Berardelli, M. L., Galli, P., La Ginestra, A., Massucci, M. A., and Varshney, K. G. (1985). “Crystalline zirconium hydrogenoarsenate hydrogenophosphate monohydrate: synthesis, ion-exchange properties and thermal behavior,” J. Chem. Soc. Dalton Trans. 1737–1742.Google Scholar
Elbrahimi, M., and Durand, J. (1990). “Structure crystalline de l’arséniate double de potassium et de zirconium KZr 2(AsO 4)3,”Z. Anorg. Allg. Chem. 584, 178184.CrossRefGoogle Scholar
Hazen, R. M., Finger, L. W., Agrawal, D. K., McKinstry, H. A., and Perrotta, J. (1987). “High temperature crystal chemistry of sodium zirconium phosphate,” J. Mater. Res. 2, 329337.Google Scholar
Hong, H. Y-P. (1976). “Crystal structures and crystal chemistry in the system Na 1+xZr 2Si xP 3−xO 12,”Mater. Res. Bull. 11, 173182.CrossRefGoogle Scholar
Kohler, H., Schulz, H., and Melnikov, O. (1983). “Composition and conduction mechanism of the Nasicon structure. X-ray diffraction study on two crystals at different temperatures,” Mater. Res. Bull. 18, 11431152.Google Scholar
Kohler, H., and Schulz, H. (1986). “X-ray diffraction experiments on sodium-zirconium-phosphates single crystal at 295 K and at 993 K,” Mater. Res. Bull. 21, 2331.CrossRefGoogle Scholar
International Tables of Crystallography (1962). Vol. II (Kynoch Press, Birmingham, England).Google Scholar
Lucco-Borlera, M., Mazza, D., Negro, A., Montanaro, L., and Ronchetti, S. (1997). “X-ray characterization of the new nasicon compositions Na 3Zr 2−x/4Si 2−xP 1+xO 12 with x=0.333, 0.667, 1.000, 1.333, 1.667,” Powder Diffr. 12, 171174.Google Scholar
Lunezheva, E. S., Maksimov, B. A., and Meln’ikov, O. K. (1989). “Crystal Structure of KTi 2(PO 4)3,”Kristallografiya, 34, 11191122.Google Scholar
Mazza, D. (1996). “La Diffrazione dei Raggi-X dai Materiali Policristallini - Esercizi e Simulazioni al Calcolatore,” Ed. CLUT Torino.Google Scholar
McClune, W. F. (1985). “Powder Diffraction File,” International Centre for Diffraction Data, Newtown Square, PA.Google Scholar
Rodrigo, J. L., Carrasco, P., and Alamo, J. (1989). “Thermal expansion of NaTi 2(PO 4)3 studied by Rietveld method from X-ray diffraction data,” Mater. Res. Bull. 24, 611618.CrossRefGoogle Scholar
Shannon, R. D., and Prewitt, C. T. (1969). “Effective ionic radii in oxides and fluorides,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 25, 925944.CrossRefGoogle Scholar
Sljukic, M., Matkovic, B., Prodic, B., and Anderson, D. (1969). “The crystal structure of KZr 2(PO 4)3,”Z. Kristallogr. 130, 148161.Google Scholar