Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-23T02:09:50.542Z Has data issue: false hasContentIssue false

Polycrystalline materials analysis using the Maia pixelated energy-dispersive X-ray area detector

Published online by Cambridge University Press:  26 September 2017

Henry J Kirkwood
Affiliation:
ARC Centre of Excellence in Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, VIC 3086, Australia
Martin D de Jonge
Affiliation:
Australian Synchrotron, 800 Blackburn Road, Clayton, VIC 3168, Australia
Daryl L Howard
Affiliation:
Australian Synchrotron, 800 Blackburn Road, Clayton, VIC 3168, Australia
Chris G Ryan
Affiliation:
CSIRO Earth Sciences and Resource Engineering, Kensington, WA 6151, Australia
Grant van Riessen
Affiliation:
Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, VIC 3086, Australia
Felix Hofmann
Affiliation:
Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
Matthew R Rowles
Affiliation:
Department of Physics and Astronomy, Curtin University, Perth, WA 6845, Australia
Anna M Paradowska
Affiliation:
Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, NSW 2234, Australia
Brian Abbey*
Affiliation:
ARC Centre of Excellence in Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, VIC 3086, Australia
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

Elemental, chemical, and structural analysis of polycrystalline materials at the micron scale is frequently carried out using microfocused synchrotron X-ray beams, sometimes on multiple instruments. The Maia pixelated energy-dispersive X-ray area detector enables the simultaneous collection of X-ray fluorescence (XRF) and diffraction because of the relatively large solid angle and number of pixels when compared with other systems. The large solid angle also permits extraction of surface topography because of changes in self-absorption. This work demonstrates the capability of the Maia detector for simultaneous measurement of XRF and diffraction for mapping the short- and long-range order across the grain structure in a Ni polycrystalline foil.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbey, B. (2013). “From grain boundaries to single defects: a review of coherent methods for materials imaging in the X-ray sciences,” Jom 65(9), 11831201.CrossRefGoogle Scholar
Abbey, B., Hofmann, F., Belnoue, J., Rack, A., Tucoulou, R., Hughes, G., and Korsunsky, A. M. (2011). “Mapping the dislocation sub-structure of deformed polycrystalline Ni by scanning microbeam diffraction topography,” Scr. Mater. 64(9), 884887.CrossRefGoogle Scholar
Cahn, J., Pan, J. and Balluffi, R. (1979). “Diffusion induced grain boundary migration,” Scr. Metal. 13, 503509.CrossRefGoogle Scholar
Chantler, C. T., Rae, N. A., Islam, M. T., Best, S. P., Yeo, J., Smale, L. F., and Wang, F. (2012). “Stereochemical analysis of ferrocene and the uncertainty of fluorescence XAFS data,” J. Synchrotron Radiat. 19(2), 145158.CrossRefGoogle Scholar
Filipponi, A., Di Cicco, A., De Panfilis, S., Trapananti, A., Itie, J. P., Borowski, M., and Ansell, S. (2001). “Investigation of undercooled liquid metals using XAFS, temperature scans and diffraction,” J. Synchrotron Radiat. 8(2), 8186.CrossRefGoogle ScholarPubMed
Fisher, L. A., Fougerouse, D., Cleverley, J. S., Ryan, C. G., Micklethwaite, S., Halfpenny, A., and Spiers, K. (2015). “Quantified, multi-scale X-ray fluorescence element mapping using the Maia detector array: application to mineral deposit studies,” Miner Deposit. 50(6), 665674.CrossRefGoogle Scholar
Geil, E. C. and Thorne, R. E. (2014). “Correcting for surface technology in X-ray fluorescence imaging,” J. Synchrotron Radiat. 21(6), 13581363.CrossRefGoogle Scholar
Guo, Y., Collins, D., Tarleton, E., Hofmann, F., Tischler, J., Liu, W., Xu, R., Wilkinson, A., and Britton, T. (2015). “Measurements of stress fields near a grain boundary: exploring blocked arrays of dislocations in 3D, Acta Mater. 96, 229236.CrossRefGoogle Scholar
Hofmann, F., Song, X., Dolbnya, I., Abbey, B., and Korsunsky, A. M. (2009). “Probing intra-granular deformation by micro-beam Laue diffraction,” Proc. Eng. 1(1), 193196.CrossRefGoogle Scholar
Hofmann, F., Song, X., Jun, T. S., Abbey, B., Peel, M., Daniels, J., and Korsunsky, A. M. (2010). “High energy transmission micro-beam Laue synchrotron X-ray diffraction,” Materials Letters. 64(11), 13021305.CrossRefGoogle Scholar
Hofmann, F., Abbey, B., Connor, L., Baimpas, N., Song, X., Keegan, S., and Korsunsky, A. M. (2012a). “Imaging of grain-level orientation and strain in thicker metallic polycrystals by high energy transmission micro-beam Laue (HETL) diffraction techniques,” Int. J. Mater. Res. 103(2), 192199.CrossRefGoogle Scholar
Hofmann, F., Song, X., Abbey, B., Jun, T. S., and Korsunsky, A. M. (2012b). “High-energy transmission Laue micro-beam X-ray diffraction: a probe for intra-granular lattice orientation and elastic strain in thicker samples,” J. Synchrotron Radiat. 19(3), 307318.CrossRefGoogle ScholarPubMed
Jackson, A. G. (1991). Handbook of Crystallography: For Electron Microscopists and Others (Springer, New York), pp. 8388.CrossRefGoogle Scholar
Kirkham, R., Dunn, P. A., Kuczewski, A. J., Siddons, D. P., Dodanwela, R., Moorhead, G. F., and Pfeffer, M. (2010). “The Maia spectroscopy detector system: engineering for integrated pulse capture, low-latency scanning and real-time processing,” In AIP Conf. Proc. 1234(1), 240––243.CrossRefGoogle Scholar
Korsunsky, A. M., Song, X., Hofmann, F., Abbey, B., Xie, M., Connolley, T., and Drakopoulos, M. (2010). “Polycrystal deformation analysis by high energy synchrotron X-ray diffraction on the I12 JEEP beamline at Diamond Light Source,” Mater. Lett. 64(15), 17241727.CrossRefGoogle Scholar
Ordavo, I., Ihle, S., Arkadiev, V., Scharf, O., Soltau, H., Bjeoumikhov, A., and Hartmann, R. (2011). “A new pnCCD-based color X-ray camera for fast spatial and energy-resolved measurements. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel., Spectrom., Detectors Assoc. Equip. 654(1), 250257.CrossRefGoogle Scholar
Paterson, D., de Jonge, M. D., Howard, D. L., Lewis, W., McKinlay, J., Starritt, A., and Siddons, D. P. (2011). The X-ray fluorescence microscopy beamline at the Australian synchrotron. In AIP Conf. Proc. 1365(1), 219222.CrossRefGoogle Scholar
Robach, O., Micha, J. S., Ulrich, O., and Gergaud, P. (2011). “Full local elastic strain tensor from Laue microdiffraction: simultaneous Laue pattern and spot energy measurement,” J. Appl. Crystallogr. 44(4), 688696.CrossRefGoogle Scholar
Ryan, C. G. and Jamieson, D. N. (1993). “Dynamic analysis: on-line quantitative PIXE microanalysis and its use in overlap-resolved elemental mapping,” Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At. 77(1–4), 203214.CrossRefGoogle Scholar
Ryan, C. G., Etschmann, B. E., Vogt, S., Maser, J., Harland, C. L., Van Achterbergh, E., and Legnini, D. (2005). “Nuclear microprobe–synchrotron synergy: towards integrated quantitative real-time elemental imaging using PIXE and SXRF,” Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At. 231(1), 183188.CrossRefGoogle Scholar
Ryan, C. G., Siddons, D. P., Kirkham, R., Li, Z. Y., de Jonge, M. D., Paterson, D., and De Geronimo, G. (2013). “The Maia detector array and X-ray fluorescence imaging system: locating rare precious metal phases in complex samples,” SPIE Opt. Eng. Appl. Int. Soc. Opt. Photonics 88510Q88510Q.Google Scholar
Ryan, C. G., Siddons, D. P., Kirkham, R., Li, Z. Y., de Jonge, M. D., Paterson, D. J., and Boesenberg, U. (2014). “Maia detector array and X-ray fluorescence imaging system: locating rare precious metal phases in complex sample,” Proc. SPIE Opt. Eng. Appl. Int. Soc. 8851, 111.Google Scholar
Scharf, O., Ihle, S., Ordavo, I., Arkadiev, V., Bjeoumikhov, A., Bjeoumikhova, S., and Kuhbacher, M. (2011). “Compact pnCCD-based X-ray camera with high spatial and energy resolution: a color X-ray camera,” Anal. Chem. 83(7), 25322538.CrossRefGoogle ScholarPubMed
Saracchini, R. F., Stolfi, J., Leitão, H. C., Atkinson, G. A., and Smith, M. L. (2012). “A robust multi-scale integration method to obtain the depth from gradient maps,” Comput. Vis. Image Underst. 116(8), 882895.CrossRefGoogle Scholar
Smilgies, D. M., Powers, J. A., Bilderback, D. H., and Thorne, R. E. (2012). “Dual-detector X-ray fluorescence imaging of ancient artifacts with surface relief,” J. Synchrotron Radiat. 19(4), 547550.CrossRefGoogle ScholarPubMed
Tack, P., Garrevoet, J., Bauters, S., Vekemans, B., Laforce, B., Van Ranst, E., and Vincze, L. (2014). “Full-field fluorescence mode micro-XANES imaging using a unique energy dispersive CCD detector,” Anal. Chem. 86(17), 87918797.CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Kirkwood et al supplementary material 1

Supplementary Figure

Download Kirkwood et al supplementary material 1(PDF)
PDF 357.5 KB