Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-24T03:05:53.705Z Has data issue: false hasContentIssue false

Pitfalls in the powder diffraction analysis of zeolites ZSM-5 and ZSM-8

Published online by Cambridge University Press:  10 January 2013

Claudia Weidenthaler
Affiliation:
Institut für Geowissenschaften der Universität Mainz, Saarstr. 21, D-55099 Mainz, Deutschland
Reinhard X. Fischer
Affiliation:
Institut für Geowissenschaften der Universität Mainz, Saarstr. 21, D-55099 Mainz, Deutschland
Robert D. Shannon
Affiliation:
Institut für Geowissenschaften der Universität Mainz, Saarstr. 21, D-55099 Mainz, Deutschland

Abstract

Crystal structure analyses by the Rietveld method have shown that the framework structures of zeolites ZSM-5 and ZSM-8 are essentially identical. Therefore, it is difficult to distinguish the two phases especially when the template-free H forms are studied. In addition, some inconsistencies in publications on the two zeolites aggravate the correct interpretation of the powder diagrams. A powder pattern published for ZSM-8 which indicates significant differences between the lattice constants of ZSM-8 and ZSM-5 is shown to be incorrectly indexed. Correct reindexing gives lattice constants for ZSM-8 matching average ZSM-5 values. Peak splitting of a ZSM-8 reflection at 2θ≈23° (CuKα) has been used frequently to distinguish ZSM-8 from ZSM-5. However, it is also a common feature of ZSM-5 diagrams when the difference between a and b lattice constants is big enough to separate hkl and khl reflections within the instrumental resolution. Our data on two ZSM-8 samples indicate that cell dimensions of ZSM-8 do not deviate from average ZSM-5 values. It is suspected that effects in the decomposition of crystals upon calcination, and/or morphology and shape of twin individuals, and/or stacking faults account for different sorption properties of the two zeolites rather than differences in their average crystal structures.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akolekar, D. B., and Choudhary, V. R. (1987). J. Catal. 105, 416431.CrossRefGoogle Scholar
Argauer, R. J., and Landolt, G. R., Mobil Oil Corp. (1972). U.S. Pat. 3 702 886.Google Scholar
Baerlocher, C. (1984). Proceedings of the 6th International Zeolite Conference, Reno, edited by Olson, D. and Bisio, A. (Butterworths, Guilford), pp. 823833.Google Scholar
Chao, K. J., Lin, J. C., Wang, Y., and Lee, G. H. (1986). Zeolites 6, 3538.CrossRefGoogle Scholar
Chon, H., Ahn, B. J., and Park, S. E. (1985). Proceedings of the 8th International Congress on Catalysis (Chemie-Verlag, Weinheim), Vol. 4, pp. IV555–IV564.Google Scholar
Fischer, R. X. (1994). J. Appl. Cryst., submittedGoogle Scholar
Fischer, R. X., Lengauer, C., Tillmanns, E., Ensink, R. J., Reiss, C. A., and Fantner, E. J. (1993). Materials Science Forum 133–136, 287292.CrossRefGoogle Scholar
Hay, D. G., and Jaeger, H. (1984). J. Chem. Soc, Chem. Comm., 1433.Google Scholar
Joshi, M. S., and Prabhu, K. M. (1988). Cryst. Res. Technol. 23, 561566.CrossRefGoogle Scholar
Kassner, D. (1993). RERIET, a program for restrained refinement of powder diffraction data. Univ. Frankfurt, Germany.Google Scholar
Koningsveld, H. van (1990). Acta Cryst., B 46, 731735.CrossRefGoogle Scholar
Koningsveld, H. van, Bekkum, H. van, and Jansen, J. C. (1987). Acta Cryst. B 43, 127132.CrossRefGoogle Scholar
Kornatowski, J., Baur, W. H., Pieper, G., Rozwadowski, M., Schmitz, W., and Cichowlas, A. (1992). J. Chem. Soc. Faraday Trans. 88(9), 13391343.CrossRefGoogle Scholar
Lechert, H. (1984). NATO ASI Ser., Zeolites: Science and Technology, E 80, edited by Ribeiro, F. R., Rodrigues, A. E., Rollmann, L. D., and Naccache, C. (Martinus Nijhoff, The Hague), pp. 151192.CrossRefGoogle Scholar
Lermer, H., Draeger, M., Steffen, J., and Unger, K. K. (1985). Zeolites 5, 131134.CrossRefGoogle Scholar
Mighell, A. D., Hubbard, C. R., and Stalick, J. K. (1981). NBS*AIDS80: A FORTRAN Program For Crystallographic Data Evaluation—Natl. Bureau Stand. (U.S.) Tech. Note 1141.CrossRefGoogle Scholar
Mobil Oil Corp. (1971). Netherlands Patent 70 1807.Google Scholar
Olson, D. H., Kokotailo, G. T., Lawton, S. L., and Meier, W. M. (1981). J. Phys. Chem. 85, 22382243.CrossRefGoogle Scholar
Plank, C. J., Rosinski, E. J., and Rubin, M. K. (1973). U.K. Patent 1 334 243.Google Scholar
Price, G. D., Pluth, J. J., Smith, J. V., Bennett, J. M., and Patton, R. L. (1982). J. Am. Chem. Soc. 104, 59715977.CrossRefGoogle Scholar
Rollman, L. D., and Valyocsik, E. W. (1983). Inorganic Synthesis 22, 6168.CrossRefGoogle Scholar
Schicker, P. A. (1988). Dissertation ETH Zürich Nr. 8494.Google Scholar
Smith, G. S., and Snyder, R. L. (1979). J. Appl. Cryst. 12, 6065.CrossRefGoogle Scholar
Taylor, J. C., Miller, S. A., and Bibby, D. M. (1986). Z. Krist. 176, 183192.Google Scholar
Weidenthaler, C., Fischer, R. X., and Shannon, R. D. (1994a). Proceedings of the 10th International Zeolite Conference (in press).Google Scholar
Weidenthaler, C., Fischer, R. X., Shannon, R. D., and Medenbach, O. (1994b). J. Phys. Chem., submittedGoogle Scholar