Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T16:54:46.720Z Has data issue: false hasContentIssue false

New X-ray powder diffraction data for Fe, B substituted Rb-leucites (RbFeSi2O6 and RbBSi2O6)

Published online by Cambridge University Press:  10 January 2013

D. Mazza*
Affiliation:
Dipartimento di Scienza dei Materiali e Ingegneria Chimica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
M. Lucco Borlera
Affiliation:
Dipartimento di Scienza dei Materiali e Ingegneria Chimica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
*
a)Electronic mail: [email protected]

Abstract

The boron and iron for aluminum substitution in the Rb-leucite structure (RbAlSi2O6, ICDD card 38-201) has been examined by sol-gel preparation of different samples along the three compositional joins Rb(X,Y)Si2O6, where X and Y are any two of the elements Al, Fe, B. The compound RbBSi2O6 (a0=12.831 Å) is here described and characterized by X-ray powder diffraction for the first time, while the compound RbFeSi2O6 is reexamined with a more precise determination of lattice parameters and diffraction intensities with respect to ICDD card 31-1189. The lattice parameters and the space groups of different selected terms of the three solid solutions are reported.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bansal, N. P. (1990). “Influence of several metal ions on the gelation activation energy of silicon tetraethoxide,” J. Am. Ceram. Soc. 73, 2647–52.CrossRefGoogle Scholar
Hatch, D. M., Subrata, G., and Stokes, H. T. (1990). “Phase Transition in Leucite KAlSi2O6,” Phys. Chem. Minerals 17, 220227.CrossRefGoogle Scholar
Ihara, M. and Kamei, F. (1980). “Crystal Structure of Potassium Borosilicate K2O·B2O3·4SiO2,” J. Ceram. Soc. Jpn. 88, 32–35.Google Scholar
Kohn, S. C., Henderson, C. M. B., and Dupree, R. (1994). “NMR Studies of the Leucite Analogues X2YSi5O12, where X=K,Rb,Cs; Y=Mg,Zn,Cd,” Phys. Chem. Miner. 21, 176190.CrossRefGoogle Scholar
Kume, S. and Koizumi, M. (1965). “Synthetic pollucites in the system Cs2O·Al2O3·4SiO2–Cs2O·Fe2O3·4SiO2–H2O, their phase relationship and physical properties,” Am. Miner. 50, 587592.Google Scholar
Mazza, D., Lucco-Borlera, M., Brisi, C., and Onida, B. (1996). “Boron for aluminium substitution in the KAlSi2O6 structure,” J. Eur. Ceram. Soc. (in press).Google Scholar
Mazzi, F., Galli, E., and Gottardi, G. (1976). “The crystal structure of tetragonal leucite,” Am. Miner. 61, 108115.Google Scholar
Shannon, R. D. and Prewitt, C. T. (1969). “Effective ionic radii in oxides and fluorides,” Acta Crystallogr. Sect. B 25, 925–45.CrossRefGoogle Scholar