Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-19T06:39:20.506Z Has data issue: false hasContentIssue false

LCBASE: Program and database for phase identification

Published online by Cambridge University Press:  10 January 2013

W. Paszkowicz
Affiliation:
Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw, Poland
A. Makosa
Affiliation:
Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw, Poland

Abstract

A computer program for phase identification using powder diffraction data is presented. It works with a small database containing the unit-cell dimensions and Bravais lattice for chosen classes of inorganic substances. The algorithm works for single phase samples and such samples in which a single phase dominates. During the search, the peak positions generated using the reference unit cells are compared with the experimental ones. Unit-cell constants of all obtained solutions are (optionally) immediately refined. Application examples show that the method gives as possible solutions those database entries for which the cell dimensions differ from the investigated sample by not more than about 0.05 Å. These entries may include the true phase or isotypical phases unless the imposed chemical constraint does not exclude them. If the sample is a solid solution, then the algorithm is able to find phases of differing chemical composition belonging to the same solubility range (provided that the difference in lattice constants is not too large). One of the examples illustrates the possibility of application for electron-diffraction data.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bazuev, G. V., and Shveïkin, G. P. (1985). Slozhnye oksidy elementov s dostraivayushchimisya d- i f-obolochkami (English translation, Complex Oxides of Elements with Adjustable d and f Orbitals) (Nauka, Moscow), p. 72.Google Scholar
Cooper, D. L., Jordan, T. L. Jr., and Kempter, C. P. (1959). LA-Rep. No. 2308, Los Alamos.Google Scholar
Chichagov, A. V. (1991). Mater. Sci. Forum 79–82, 257262.CrossRefGoogle Scholar
Gamazova, E. A., and Novomlinsky, L. A. (1991). Mater. Sci. Forum 79–82, 299302.CrossRefGoogle Scholar
Garvey, R. (1986). Powder Diffr. 1, 114.Google Scholar
Hölzel, A. R. (1989). Systematics of Minerals (Hölzel, Ober-Olm).Google Scholar
Jørgensen, J.-E. (1991). Powder Diffr. 6, 8284.CrossRefGoogle Scholar
Maojoud, M., Jardinier-Offergeld, M., and Bouillon, F. (1993). Appl. Surf. Sci. 64, 8189.CrossRefGoogle Scholar
Mirkin, L. I. (1961). “Spravochnik po rentgenostrukturnomu analizu polikristallov,” Handbook on X-ray Structural Analysis of Polycrystals (Gos. Izd. Fiziko-Matematicheskoï Literatury, Moscow) (English edition, New York, Consultants Bureau 1964, does not include powder data).Google Scholar
Murray, W. (1972). Numerical Methods of Unconstrained Optimization, edited by Murray, W. H. (Academic, London), pp. 112.Google Scholar
Nelson, J. B., and Riley, D. P. (1945). Proc. Phys. Soc. Lond. 57, 160177.CrossRefGoogle Scholar
Paszkowicz, W. (1980). Rep. INR No. 1891, Warsaw.Google Scholar
Paszkowicz, W. (1987). J. Appl. Crystallogr. 20, 166172.CrossRefGoogle Scholar
Paszkowicz, W. (1991). Mater. Sci. Forum 79–82, 289294.CrossRefGoogle Scholar
Paszkowicz, W., and Jelitto, J. (1993). Materials Sci. Forum 133–136, 317322.CrossRefGoogle Scholar
Rodriguez, M. A., Simmins, J. J., McCluskey, P. H., Zhou, R. S., and Snyder, R. L. (1989). Adv. X-Ray Anal. 32, 497505.Google Scholar
Schreiner, W. N., Surdukowski, C., and Jenkins, R. (1982). J. Appl. Crystallogr. 15, 605610.CrossRefGoogle Scholar
Smith, D. K., and Gorter, S. (1991). J. Appl. Crystallogr. 24, 369402.CrossRefGoogle Scholar
Snyder, R. L. (1991). Mater. Sci. Forum 79–82, 513528.CrossRefGoogle Scholar
Swann, W. H. (1972). Numerical Methods of Unconstrained Optimization, edited by Murray, W. H. (Academic, London), pp. 1328.Google Scholar
Taylor, A., and Sinclair, H. (1945). Proc. Phys. Soc. Lond. 57, 126135.CrossRefGoogle Scholar
Vasil'ev, E. K. (1991). Mater. Sci. Forum 79–82, 271276.CrossRefGoogle Scholar
Wu, E. (1988). J. Appl. Crystallogr. 21, 530535.CrossRefGoogle Scholar