Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-23T05:46:13.107Z Has data issue: false hasContentIssue false

Influence of annealing on X-ray diffraction of natural alexandrite

Published online by Cambridge University Press:  05 March 2012

Rosa Maria Fernandes Scalvi
Affiliation:
Departamento de Física, Faculdade de Cie⁁ncias-UNESP-C.P. 473, 17033-360-Bauru-SP
Lígia de Oliveira Ruggiero
Affiliation:
Departamento de Física, Faculdade de Cie⁁ncias-UNESP-C.P. 473, 17033-360-Bauru-SP
Máximo Siu Li
Affiliation:
DFCM-Instituto de Física de Sa˜o Carlos-USP-C.P. 369, 13560-970-Sa˜o Carlos-SP

Abstract

In this work we present results of X-ray diffraction using powder method, on natural alexandrite samples from Minas Gerais State (Brazil), as a function of a sequence of annealing. From these measurements we determine lattice parameters before (a=9.405 Å, b=5.471 Å, c=4.409 Å) and after annealing, and its structure is confirmed as orthorhombic. Measurements done after an annealing of 15 minutes at 700 °C and for 5 hours at 1000 °C indicate the migration of atoms present in the sample through different phases, which were also identified by Microprobe Analysis (WDS). However we have verified that such migration does not modify the structure. X-ray diffraction measurements have been carried out in conjunction with optical absorption in the UV–Vis as a function of annealing.

Type
New Diffraction Data
Copyright
Copyright © Cambridge University Press 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Farrel, E. F., Fang, J. H., and Newham, R. E. (1963). “Refinement of the chrysoberyl structure,” Am. Mineral. AMMIAY 48, 804810. amn, AMMIAY Google Scholar
Forbes, C. E. (1983). “Analysis of the spin Hamiltonian parameters for Cr3+ in mirror and inversion symmetry sites of alexandrite (Al2−xCrxBeO4). Determination of the relative site occupancy by EPR,” J. Chem. Phys. JCPSA6 79, 25902599. jcp, JCPSA6 CrossRefGoogle Scholar
Hassan, F., and El-Rakhawy, A. (1974). “Chromium III centers in synthetic alexandrite,” Am. Mineral. AMMIAY 59, 159165. amn, AMMIAY Google Scholar
JCPDS—International Centre for Diffraction Data (1998). 81–1049.Google Scholar
Jovanic, B. R. (1996). “High pressure on the R1 line lifetime in alexandrite BeAl2O4:Cr3+,” J. Lumin. JLUMA8 68, 4348. jlu, JLUMA8 Google Scholar
Liu, Y. et al. (1995). “Relationship between the crystallographic orientation and the effect alexandrite in synthetic alexandrite,” Miner. Mag. MNLMBB 59, 111114. min, MNLMBB Google Scholar
Petersen, Jr., K. J. (1998). Thesis, Instituto de Geocie⁁ncias, USP-Sa˜o Paulo.Google Scholar
Phakey, P. P. (1969). “Transmission electron microscope study of anti-phase boundaries in alexandrite (Al2−xCrxBeO4),Phys. Status Solidi PHSSAK 32, 801814. phx, PHSSAK CrossRefGoogle Scholar
Powell, R. C. et al. (1985). “Spectroscopic properties of alexandrite crystals,” Phys. Rev. B PRBMDO 32, 27882797. prb, PRBMDO Google Scholar
Rabadanov, M. K., and Dudka, A. P. (1997). “Comparative structural study of Al2BeO4 and Al2BeO4:Cr3+ (°3 at% Cr) crystals,” Inorg. Mater. (Transl. of Neorg. Mater.) INOMAF 33, 4851. inm, INOMAF Google Scholar
Schmetzer, K., Bank, H., and Gubelin, E. (1980). “The alexandrite effect in minerals: Chrysoberyl, Garnet, Corundum, Fluorite,” N. Jb. Miner. Abh. ZZZZZZ 138, 147164.Google Scholar
Underhill, A. E. (1966). “Calculation of the Racah parameter B for Nickel (II) and Cobalt (II) compounds,” Nature (London) NATUAS 210, 834835. nat, NATUAS Google Scholar
Walling, J. C. et al. (1985). “Tunable alexandrite lasers: Development and performance,” IEEE J. Quantum Electron. IEJQA7 QE-21, 15681581. ejq, IEJQA7 Google Scholar
Yeom, T. H. et al. (1997). “Spin lattice relaxations of 9Be and 27Al single crystalline alexandrite,” J. Appl. Phys. JAPIAU 82, 24722475. jap, JAPIAU Google Scholar
Zhang, Z. et al. (1993). “Thermal characteristics of alexandrite fluorescence decay at high temperatures, induced by a visible laser diode emission,” J. Appl. Phys. JAPIAU 73, 34933498. jap, JAPIAU Google Scholar