Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-23T05:36:47.509Z Has data issue: false hasContentIssue false

In situ analysis of LiFePO4 batteries: Signal extraction by multivariate analysis

Published online by Cambridge University Press:  29 February 2012

Mark A. Rodriguez
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185-1411
Mark H. Van Benthem
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185-1411
David Ingersoll
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185-1411
Sven C. Vogel
Affiliation:
Lujan Neutron Scattering Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Helmut M. Reiche
Affiliation:
Lujan Neutron Scattering Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

Abstract

The electrochemical reaction behavior of a commercial Li-ion battery (LiFePO4-based cathode, graphite-based anode) has been measured via in situ neutron diffraction. A multivariate analysis was successfully applied to the neutron diffraction data set facilitating in the determination of Li bearing phases participating in the electrochemical reaction in both the anode and cathode as a function of state-of-charge (SOC). The analysis resulted in quantified phase fraction values for LiFePO4 and FePO4 cathode compounds as well as the identification of staging behavior of Li6, Li12, Li24, and graphite phases in the anode. An additional Li-graphite phase has also been tentatively identified during electrochemical cycling as LiC48 at conditions of ∼5% to 15% SOC.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersson, A. S., Kalska, B., Haggstrom, L., and Thomas, J. O. (2000). “Lithium extraction/insertion in LiFePO4: An X-ray diffraction and Mossbauer spectroscopy study,” Solid State Ionics SSIOD3 130, 4152.10.1016/S0167-2738(00)00311-8CrossRefGoogle Scholar
Arico, A. S., Bruce, P., Scrosati, B., Tarascon, J. -M., and Van Schalkwijk, W. (2005). “Nanostructural materials for advanced energy conversion and storage devices,” Nature Mater. NMAACR 4, 366377.10.1038/nmat1368CrossRefGoogle ScholarPubMed
Billaud, D., McRae, E., and Herold, A. (1979). “Synthesis and electrical resistivity of lithium-pyrographite intercalation compounds (stages I, II, and III),” Mater. Res. Bull. MRBUAC 14, 857864.10.1016/0025-5408(79)90149-1CrossRefGoogle Scholar
Conte, M., Prosini, P. P., and Passerini, S. (2004). “Overview of energy/hydrogen storage: State-of-the-art of the technologies and prospects for nanomaterials,” Mater. Sci. Eng., B MSBTEK 108, 28.10.1016/j.mseb.2003.10.107CrossRefGoogle Scholar
Jollife, I. T. (2002). Principal Component Analysis, 2nd ed. (Springer-Verlag, New York).Google Scholar
Keenan, M. R. and Kotula, P. G. (2004). “Accounting for Poisson noise in the multivariate analysis of ToF-SIMS spectrum images,” Surf. Interface Anal. SIANDQ 36, 203212.10.1002/sia.1657CrossRefGoogle Scholar
Larson, A. C. and Von Dreele, R. B. (2000). General Structure Analysis System (GSAS), LAUR Report No. 86-748, Los Alamos National Laboratory, Los Alamos, New Mexico.Google Scholar
Ravet, N., Chouinard, Y., Magnan, J. F., Besner, S., Gauthier, M., and Armand, M. (2001). “Electroactivity of natural and synthetic triphylite,” J. Power Sources JPSODZ 97–98, 503507.10.1016/S0378-7753(01)00727-3CrossRefGoogle Scholar
Rodriguez, M. A., Keenan, M. R., and Nagasubramanian, G. (2007). “In situ X-ray diffraction analysis of (CFx)n batteries: Signal extraction by multivariate analysis,” J. Appl. Crystallogr. JACGAR 40, 10971104.10.1107/S0021889807042045CrossRefGoogle Scholar
The Mathworks. (2008). MATLAB. VERSION 7.7.0.471 (The Mathworks Inc., Natick, MA).Google Scholar
Toby, B. H. (2001). “EXPGUI, a graphical user interface for GSAS,” J. Appl. Crystallogr. JACGAR 34, 210213.10.1107/S0021889801002242CrossRefGoogle Scholar
Van Benthem, M. H. and Keenan, M. R. (2004). “Fast algorithm for the solution of large-scale non-negativity-constrained least squares problems,” J. Chemom. JOCHEU 18, 441450.10.1002/cem.889CrossRefGoogle Scholar
Van Benthem, M. H., Keenan, M. R., and Haaland, D. M. (2002). “Application of equality constraints on variables during alternating least squares procedures,” J. Chemom. JOCHEU 16, 613622.10.1002/cem.761CrossRefGoogle Scholar
Wenk, H. -R., Lutterotti, L., and Vogel, S. (2003). “Texture analysis with the new HIPPO TOF diffractometer,” Nucl. Instrum. Methods Phys. Res. A NIMAER 515, 575588.10.1016/j.nima.2003.05.001CrossRefGoogle Scholar