Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T01:37:29.704Z Has data issue: false hasContentIssue false

The ICDD/PDF Superconductor SubFile

Published online by Cambridge University Press:  10 January 2013

W. Wong-Ng
Affiliation:
Ceramics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
R. L. Snyder
Affiliation:
NYS College of Ceramics, Alfred University, Alfred, New York 14802
C. Park
Affiliation:
NYS College of Ceramics, Alfred University, Alfred, New York 14802
E. Antipov
Affiliation:
Moscow State University, Moscow, Russia
W. F. McClune
Affiliation:
ICDD, Newtown Square, Pennsylvania 19073

Abstract

The activity of the high Tc task group of the ICDD Ceramic Subcommittee is described. This activity includes the compilation of X-ray powder diffraction patterns of the high Tc superconductors and related phases identified from the International Centre for Diffraction Data/Powder Diffraction File (ICDD/PDF). The coverage of this ICDD/PDF Superconductor SubFile (SC) includes high Tc phases and their structurally related phases, products of elemental substitution in the high Tc phases, phases found in the phase diagrams containing the high Tc phases, as well as potential reaction products with commonly used sample containers, and potential conventional low-temperature (metallic and nonmetallic) superconductors.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antipo, E. V., Loureiro, S. M., Chaillout, C., Capponi, J. J., Bordet, P., Tholence, J. L., Putilin, S. N., and Marezio, M. (1993). “The synthesis and characterization of the HgBa2Ca2Cu3O8+δ and HgBa2Ca3Cu4O10+δ,” Physica (Amsterdam), 215 110.Google Scholar
Bednorz, J. G., and Muller, K. A. (1986). “Possible High Tc Superconductivity in the Ba–la–Cu–O System,” Z. Phys. 64, 189.CrossRefGoogle Scholar
Kaneko, T., Wada, T., Yamauchi, H., and Tanaka, S. (1990). “(Tl,Pb,Bi)Sr2Ca2Cu3Oz superconductors with zero resistance at 120K,” Appl. Phys. Lett. 56(13), 1281.CrossRefGoogle Scholar
Koyama, S., Endo, U., and Kawai, T. (1989). “Preparation of single, 110K Phase of the Bi–Pb–Sr–Ca–Cu–O superconductor, ”Jpn. J. Appl. Phys. 27(10), L1861L1863.CrossRefGoogle Scholar
Le Page, Y., Siegrist, T., Sunshine, S. A., Schneemeyer, L. T., Murphy, D. W., Zahurak, S. M., Waszczak, J. V., McKinnon, W. R., Tatascon, J. M., Hull, G. W., and Green, L. H. (1987). “Structure properties of Ba2RCu3O7 Superconductors.”Phys. Rev. B 36, 36173621.Google Scholar
Li, S., and Greenblatt, M. (1989). “Preparation and superconductivity properties of (Tl,Bi)Sr2CaCu2Oy,” Physica C 157, 365.CrossRefGoogle Scholar
Liang, J. K., Zhang, Y. L., Huang, J. Q., Xie, S. S., Che, G. C., Cheng, X. R., and Ni, Y. M. (1989). “Crystal Structure and Superconductivity of TlBa2Ca2Cu3O8.5,” Mod. Phys. Lett. B 3(7), 561.CrossRefGoogle Scholar
Lide, D. R. (1995). Handbook of Chemistry and Physics (CRC, Boca, Raton, FL), pp. 12–63.Google Scholar
Liu, R. S., Zheng, D. N., Loram, J. W., Mirza, K. A., Campbell, A. M., and Edwards, P. P. (1992). “High critical-current densities in (Tb0.5Pb0.5)Sr2Ca2Cu3O9 with Tc up to 115K,” Appl. Phys. Lett. 60 (8), 1019.CrossRefGoogle Scholar
Loureiro, S. M., Antipov, E. V., Tholence, J. L., Capponi, J. J., Chmasissem, O., Huang, Q., and Marezio, M. (1993). “Synthesis and Structure Characterization of the 127K HgBa2CaCu2O6.22 superconductor,” Physica C 217 253.CrossRefGoogle Scholar
Maeda, H., Maeda, Y., Tanaka, M., Fukutomi, M., and Asano, T. (1988). “A new High-Tc Oxide Superconductor without a Rare Earth Element,” Jpn. J. Appl. Phys. 27(2), L209L210.Google Scholar
Matheis, D. P., and Snyder, R. L. (1990). “The Crystal Structures and Powder Diffraction patterns of the Bismuth and Thallium Ruddlesden-Popper Oxide Semiconductors,” Powder Diffr. 5(1), 8.Google Scholar
Matheis, D. P., and Snyder, R. L. (1994). “Analysis of the Modulated Bi2Sr2CaCu2O8 from X-ray Powder Diffraction Data,” Powder Diffr. 9, 28.Google Scholar
Misture, S. T., Park, C., Snyder, R. L., Jobst, B., and Seebacher, B. (1996). “Powder Diffraction Data for Several Solid Solutions with the Compositions (Sr,Ca)CuO2 and (Sr,Ca)2CuO3,” Powder Diffr. in press.Google Scholar
Paranthaman, M., Foldeaki, M., Tello, R., and Hermann, A. M. (1994). “Synthesis and magnetic characterization of (Tl0.5Pb0.5) Sr2Ca2Cu3O9 and Tl2Ba2CaCu2O8 bulk superconductors,” Physica C 219, 413.Google Scholar
Park, C., and Snyder, R. L. (1995). “The Crystal Structures of the High Temperature Cuprate Superconductors,” J. Am. Ceram. Soc. December 1995.Google Scholar
Park, C., Lee, D. H., Condrate, R. A. Sr., and Snyder, R. L. (1996). “Relation between silver and residual carbon content in the processing Tl0.5Pb0.5Sr2CaCu2O6.5+δ,” Proceedings of the 8th International Superconductivity Symposium, Hamamatsu, Japan (in press).Google Scholar
Parkin, S. S. P., Lee, V. Y., Nazzal, A. I., Savoy, R., Beyers, R., and La Place, S. J. (1988a). “Tl1Can−1Ba2CunO2n+3 (n=1,2,3): A new class of crystal structures exhibiting volume superconductivity at up to ≈110K,” Phys. Rev. 61, 750.Google Scholar
Parkin, S. S. P., Lee, V. Y., Engler, E. M., Nazzal, A. I., Huang, T. C., Gorman, G., Savoy, R., and Beyers, R. (1988b). “Bulk superconductivity at 125K in Tl2Ca2Ba2Cu3Ox,” Phys. Rev. Lett. 60(24), 2539.Google Scholar
Putilin, S. N., Bryntse, I., and Antipov, E. V. (1991). “New Complex Copper oxide: HgBa2RCu2O7(R=La,Nd,Eu,Gd,Dy,Y),” ( 1991). Mater. Res. Bull. 26, 12991307.Google Scholar
Putilin, S. N., Antipov, E. V., Chmasissem, O., and Marezio, M. (1993a). “Superconductivity at 94K in HgBa2CuO4+δ,” Nature (London) 362, 226229.Google Scholar
Putilin, S. N., Antipov, E. V., and Marezio, M. (1993b). “Superconductivity above 120K in HgBa2CaCu2O6+δ,” Physica C 212, 266.CrossRefGoogle Scholar
Reardon, B. J., and Hubbard, C. R. (1992a). “A Review of the XRD Data of the Phases present in the CaO–SrO–PbO System,” Powder Diffr. 7, 9698.CrossRefGoogle Scholar
Reardon, B. J., and Hubbard, C. R. (1992b). “A Review of the XRD Data of the Phases present in the CaO–SrO–CuO System,” Powder Diffr. 7, 142.Google Scholar
Roth et al. (1990).Google Scholar
Rubin, L. M., Orlado, T. P., Vander Sandre, J. B., Gorman, G., Savoy, R., Swope, R., and Beyers, R. (1992). “Phase Stability Limits of Bi2Sr2CaCu2O8+δ and Bi2Sr2Ca2Cu3O10+δ,” Appl. Phys. Lett. 61(16), 1977.CrossRefGoogle Scholar
Sastry, P. V. P. S. S. and West, A. R. (1994). “Synthesis, Stoichiometry and Tc of Pb-Free Bi2Sr2Ca2Cu3O10 Superconductor. Tc Variation Upon Different Atmosphere Annealings,” Physica C 232, 6368.CrossRefGoogle Scholar
Schillig, A., Cantoni, M., Guo, J. D., and Ott, H. R. (1993). “Superconductivity above 130K in the Hg–Ba–Ca–Cu–O System,” Nature (London) (London) 363, 5658.Google Scholar
Sheng, Z. Z., and Hermann, A. M. (1988). “Bulk superconductivity at 120K in the Tl–Ca/Ba–Cu–O system,” Nature (London) 332, 138.CrossRefGoogle Scholar
Subramanian, M. A., Torardi, C. C., Gopalakrishnan, J., Gai, P. L., Calabrese, J. C., Askew, T. R., Flippen, R. B., and Sleight, A. W. (1988). “Bulk superconductivity up to 122K in the Tl–Pb–Sr–Ca–Cu–O system,” Science 242, 249.CrossRefGoogle Scholar
Subramanian, M. A., Gai, P. L., and Sleight, A. W. (1990). “Synthesis and superconducting properties of (Tl1−xBix)Sr2Ca2Cu3O9,” Mater. Res. Bull. 25, 101.CrossRefGoogle Scholar
Wong-Ng, W. (1992). “The ICDD/PDF Coverage of the High Tc Superconductor and Related Compounds in the A–R–Cu–O Systems (A=Ba, Sr, and Ca, and R=Lanthanides and Y),” Powder Diffr. 7(3), 125.CrossRefGoogle Scholar
Wu, M. K., Ashburn, J. R., Torng, C. J., Hor, P. H., Meng, R. L., Gao, L., Huang, Z. J., Wand, Y. Q., and Chu, C. W. (1987). “Superconductivity at 93K in a New Mixed-Phase Y–Ba–Cu–O Compound system at Ambient pressure,” Phys. Rev. Lett. 58, 908.CrossRefGoogle Scholar