Published online by Cambridge University Press: 01 March 2012
In situ deformation studies of polycrystalline materials using diffraction are an established method to understand elastic and plastic deformation of materials. Studies of active deformation mechanisms, the interplay of deformation with texture, and ultimately the development of predictive capabilities for deformation modeling are an active field of research. Parameters studied by diffraction are typically lattice strains and texture evolution, which coupled with the macroscopic flow curve allow for improved understanding of the micro-mechanics of deformation. We performed a study of the uniaxial deformation of Zircaloy-2 at 2 GPa at the 13-BM-D beamline at the Advanced Photon Source. The deformation-DIA apparatus generates a confining hydrostatic pressure using a cubic anvil setup. Two differential rams allow an increase (compressive load) or decrease (tensile load) of the uniaxial straining in the vertical direction, allowing studies of plastic deformation at high pressures. In this paper, we describe how macroscopic strains, hydrostatic pressure, and uniaxial strains are derived and present some brief results.