Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T15:49:30.005Z Has data issue: false hasContentIssue false

Handy waveguide TXRF spectrometer for nanogram sensitivity

Published online by Cambridge University Press:  29 February 2012

Shinsuke Kunimura
Affiliation:
Department of Materials Science and Engineering, Kyoto University, Kyoto, 606-8501, Japan
Jun Kawai*
Affiliation:
Department of Materials Science and Engineering, Kyoto University, Kyoto, 606-8501, Japan
*
Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

A specimen containing nanograms of sulfur, calcium, and 3d transition metal elements was measured by incident X-ray beams of various sizes restricted by a waveguide placed in a portable TXRF spectrometer. The signal to background ratios of spectra decreased with an increase in incident X-ray beam size. The portable spectrometer was also applied to rainwater and a specimen containing antimony and rare earth elements. Nanograms of elements in these specimens were detected by K-line or L-line excitation.

Type
X-Ray Fluorescence
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Compton, A. H. (1923). “The total reflexion of X-rays,” Philos. Mag. PHMAA4 45, 11211131.CrossRefGoogle Scholar
Egorov, V. K. and Egorov, E. V. (2004). “The experimental background and the model description for the waveguide-resonance propagation of X-ray radiation through a planar narrow extended slit,” Spectrochim. Acta, Part B SAASBH 10.1016/j.sab.2004.05.032 59, 10491069.CrossRefGoogle Scholar
Iida, A. and Gohshi, Y. (1984). “Total-reflection X-ray fluorescence analysis using monochromatic beam,” Jpn. J. Appl. Phys., Part 1 JAPNDE 10.1143/JJAP.23.1543 23, 15431544.CrossRefGoogle Scholar
Iida, A., Yoshinaga, A., Sakurai, K., and Gohshi, Y. (1986). “Synchrotron radiation excited X-ray fluorescence analysis using total reflection of X-rays,” Anal. Chem. ANCHAM 10.1021/ac00293a029 58, 394397.CrossRefGoogle Scholar
Jiménez, R. E. A. (2004). “Bench top X-ray fluorescence spectrometers based on orthogonal and total reflection geometry for excitation,” European Conference on X-ray Spectrometry, Alghero, Italy, June 2004.CrossRefGoogle Scholar
Klockenkämper, R. (1997). Total Reflection X-ray Fluorescence Analysis (Wiley, New York).Google Scholar
Knoth, J. and Schwenke, H. (1980). “A new totally reflecting X-ray fluorescence spectrometer with detection limits below 10−11 g,” Fresenius' Z. Anal. Chem. ZACFAU 10.1007/BF00481262 301, 79.CrossRefGoogle Scholar
Kunimura, S. and Kawai, J. (2007a). “Portable total reflection X-ray fluorescence spectrometer for nanogram Cr detection limit,” Anal. Chem. ANCHAM 10.1021/ac062279t 79, 25932595.CrossRefGoogle ScholarPubMed
Kunimura, S. and Kawai, J. (2007b). “Trace elemental analysis of commercial bottled drinking water by a portable total reflection X-ray fluorescence spectrometer,” Anal. Sci. ANSCEN 10.2116/analsci.23.1185 23, 11851188.CrossRefGoogle ScholarPubMed
Kunimura, S., Kawai, J., and Marumo, K. (2007). “Measurements of leaching test solutions of soils by a portable total reflection X-ray fluorescence spectrometer,” Adv. X-Ray Chem. Anal., Jpn. XBNSDA 38, 367370.Google Scholar
Parratt, L. G. (1954). “Surface studies of solids by total reflection of X-rays,” Phys. Rev. PHRVAO 10.1103/PhysRev.95.359 95, 359369.CrossRefGoogle Scholar
Sánchez, H. J. (2002). “Total reflection X-ray fluorescence analysis using plate beam-guides,” Nucl. Instrum. Methods Phys. Res. B NIMBEU 10.1016/S0168-583X(02)00496-2 194, 9095.CrossRefGoogle Scholar
Streli, Ch., Pepponi, G., Wobrauschek, P., Zöger, N., Pianetta, P., Baur, K., Pahlke, S., Fabry, L., Mantler, C., Kanngießer, B., and Malzer, W. (2003). “Analysis of low Z elements on Si wafer surfaces with synchrotron radiation induced total reflection X-ray fluorescence at SSRL, Beamline 3-3: Comparison of droplets with spin coated wafers,” Spectrochim. Acta, Part B SAASBH 10.1016/S0584-8547(03)00218-0 58, 21052112.CrossRefGoogle Scholar
Waldschläger, U. (2000). “The analytical possibilities of a portable TXRF-spectrometer,” Adv. X-Ray Anal. AXRAAA 43, 418423.Google Scholar
Wobrauschek, P. (2007). “Total reflection X-ray fluorescence analysis - A review,” X-Ray Spectrom. XRSPAX 10.1002/xrs.985 36, 289300.CrossRefGoogle Scholar
Wobrauschek, P. and Aiginger, H. (1975). “Total-reflection X-ray fluorescence spectrometric determination of elements in nanogram amounts,” Anal. Chem. ANCHAM 10.1021/ac60356a034 47, 852855.CrossRefGoogle Scholar
Wobrauschek, P., Görgl, R., Kregsamer, P., Streli, Ch., Pahlke, S., Fabry, L., Haller, M., Knöchel, A., and Radtke, M. (1997). “Analysis of Ni on Si-wafer surfaces using synchrotron radiation excited total reflection X-ray fluorescence analysis,” Spectrochim. Acta, Part B SAASBH 10.1016/S0584-8547(96)01674-6 52, 901906.CrossRefGoogle Scholar
Yamada, T., Matsuo, M., Kawahara, N., Shimizu, Y., and Mantler, M. (2007). “Monitoring of Sn and Fe impurity densities in glass surface with a bench-top TXRF spectrometer,” 12th Conference on Total Reflection X-ray Fluorescence Analysis and Related Methods, Trento, Italy, June 2007.Google Scholar
Yoneda, Y. and Horiuchi, T. (1971). “Optical flats for use in X-ray spectrochemical microanalysis,” Rev. Sci. Instrum. RSINAK 10.1063/1.1685282 42, 10691070.CrossRefGoogle ScholarPubMed