Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-23T05:55:17.653Z Has data issue: false hasContentIssue false

Grazing incidence in-plane X-ray diffraction in the laboratory

Published online by Cambridge University Press:  06 March 2012

B. K. Tanner*
Affiliation:
Department of Physics, University of Durham, Durham, DH1 3LE, United Kingdom
T. P. A. Hase
Affiliation:
Department of Physics, University of Durham, Durham, DH1 3LE, United Kingdom
T. A. Lafford
Affiliation:
Department of Physics, University of Durham, Durham, DH1 3LE, United Kingdom
M. S. Goorsky
Affiliation:
Department of Physics, University of Durham, Durham, DH1 3LE, United Kingdom
*
a)Electronic mail: [email protected]

Abstract

The laboratory implementation of grazing incidence in-plane X-ray diffraction, using an unmodified commercial diffractometer, is described. Low resolution, high intensity measurements are illustrated in the study of the in-plane lattice parameters and texture of a thin polycrystalline ZnO film on glass, the in-plane order in Cd arachidate Langmuir–Blodgett films, and the depth dependence of the lattice parameter in graded Si–Ge epilayers. Use of an asymmetrically cut Ge crystal to compress and monochromate the beam provides a high resolution setting, appropriate to measurement of the in-plane mosaic of mismatched epilayers such as GaN on sapphire.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Goorsky, M. S.and Tanner, B. K. (2002). Cryst. Res. Technol. CRTEDF 37, 64. crt, CRTEDF 3.0.CO;2-E>CrossRefGoogle Scholar
Holý, V., Pietsch, U., and Baumbach, T. (1999). High Resolution X-Ray Scattering From Thin Films and Multilayers, Springer Tracts in Modern Physics (Springer, Berlin), Vol. 149.Google Scholar
Kobayashi, K., Yamaguchi, A. A., Kimura, S., Sunakawa, H., Kimura, A., and Usui, A. (1999). Jpn. J. Appl. Phys. JJAPA5 38, L61. jja, JJAPA5 Google Scholar
Kumar, N. P., Major, S., Vitta, S., Talwar, S. S., Dubcek, P., Amenitsch, H., Bernstorff, S., Ganesan, V., Gupta, A., and Dasannacharya, B. A. (2002). Colloids Surf., A CPEAEH 198–200, 75.CrossRefGoogle Scholar
Lafford, T. A., Parbrook, P. J., and Tanner, B. K. (2003c). Appl. Phys. Lett. APPLAB 83, 5434. apl, APPLAB CrossRefGoogle Scholar
Lafford, T. A., Parbrook, P. J., and Tanner, B. K. (2002). Phys. Status Solidi CZZZZZZ 0, 542.Google Scholar
Lafford, T. A., Ryan, P. A., Joyce, D. E., Goorsky, M. S., and Tanner, B. K. (2003a). Phys. Status Solidi A PSSABA 195, 265. psa, PSSABA CrossRefGoogle Scholar
Lafford, T. A., Tanner, B. K., and Parbrook, P. J. (2003b). J. Phys. D JPAPBE 36, A245. jpd, JPAPBE CrossRefGoogle Scholar
Robinson, I. K.and Tweet, D. J. (1992). Rep. Prog. Phys. RPPHAG 55, 5. rpp, RPPHAG CrossRefGoogle Scholar
Rose, D., Pietsch, U., Förster, A., and Metzger, H. (1994). Physica B PHYBE3 198, 256. phb, PHYBE3 CrossRefGoogle Scholar
Rose, D., Zeimer, U., and Pietsch, U. (1997). J. Appl. Phys. JAPIAU 81, 2601. jap, JAPIAU CrossRefGoogle Scholar
Sakurai, K. (1999). Spectrochim. Acta, Part B SAASBH 54, 1497. stb, SAASBH CrossRefGoogle Scholar