Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-06T08:34:31.176Z Has data issue: false hasContentIssue false

Evaluation of substructure parameters by peak profile analysis of high-resolution neutron diffraction spectra

Published online by Cambridge University Press:  06 March 2012

P. Lukáš
Affiliation:
Nuclear Physics Institute, 250 68 Řež, Czech Republic and Research Centre Řež Ltd., 250 68 Řež, Czech Republic
P. Strunz
Affiliation:
Nuclear Physics Institute, 250 68 Řež, Czech Republic and Research Centre Řež Ltd., 250 68 Řež, Czech Republic
V. Davydov
Affiliation:
Nuclear Physics Institute, 250 68 Řež, Czech Republic and Research Centre Řež Ltd., 250 68 Řež, Czech Republic
R. Kužel
Affiliation:
Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague, Czech Republic

Abstract

The peak profile shape analysis has been preferentially used in the evaluation of X-ray and synchrotron powder diffraction pattern. However, neutron diffraction facilities of new generation frequently offer the instrumental resolution high enough to efficiently study the effects of broadening of neutron diffraction profiles. The present paper describes the procedure for a detailed evaluation of Bragg peak shape based on the method of transformed model fitting (TMF) which has been recently developed particularly for the treatment of neutron diffraction profiles. Microstructure modeling is performed in the reciprocal space and the convolution of the model with the instrumental resolution curve is fitted to the profiles recorded in the diffraction experiment.

Type
Methods For Residual Stress Analysis
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balzar, D. (1993). “X-ray diffraction line broadening: Modeling and applications to high-Tc superconductors,” J. Res. Natl. Inst. Stand. Technol.JRITEF 98, 321353.CrossRefGoogle Scholar
Balzar, D. and Popovic, S. J. (1996). “Reliability of the simplified integral-breadth methods in diffraction line-broadening analysis,” J. Appl. Crystallogr.JACGAR 29, 1623.10.1107/S0021889895008478CrossRefGoogle Scholar
de Keijser, Th., Mittemeijer, E. J., and Rozendaal, H. C. F. (1983). “The determination of crystallite-size and lattice-strain parameters in conjunction with the profile-refinement method for the determination of crystal structures,” J. Appl. Crystallogr.JACGAR 16, 309316.10.1107/S0021889883010493CrossRefGoogle Scholar
de Keijser, Th. H., Langford, J. I., Mittemeijer, E. J., and Vogels, A. B. P. (1982). “Use of the Voigt function in a single-line method for the analysis of X-ray diffraction line broadening,” J. Appl. Crystallogr.JACGAR 15, 308314.10.1107/S0021889882012035CrossRefGoogle Scholar
Guinier, A. (1963). X-Ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies (Freeman, San Francisco).Google Scholar
Krivoglaz, M. A. (1996). X-Ray and Neutron Diffraction in Nonideal Crystals (Springer-Verlag, Berlin, Heidelberg).CrossRefGoogle Scholar
Kužel, R. (2007). “Kinematical diffraction by distorted crystals—dislocation X-ray line broadening,” Z. Kristallogr.ZEKRDZ 222, 136149.10.1524/zkri.2007.222.3-4.136CrossRefGoogle Scholar
Lloyd, E. (1984). Handbook of Applicable Mathematics: Statistics, Vol. IV, Part A. New York, Wiley.Google Scholar
Lukáš, P., Novák, V., Šittner, P., and Neov, D. (2001a). “In situ high resolution neutron diffraction study of anisotropy and stress effects in transforming CuAlZnMn shape memory alloys,” J. Neutron Res.JNREFM 9, 7986.10.1080/10238160108200128CrossRefGoogle Scholar
Lukáš, P., Tomota, Y., Harjo, S., Neov, D., Strunz, P., and Mikula, P. (2001b). “In situ neutron diffraction study of drawn pearlitic steel wires upon tensile deformation,” J. Neutron Res.JNREFM 9, 415421.10.1080/10238160108200172CrossRefGoogle Scholar
Mikula, P., Vrána, M., Lukáš, P., and Wagner, V. (2002). Recent Advances in Experimental Mechanics, edited by Gdoutos, E. E. (Kluwer, Dordrecht), pp. 457466.Google Scholar
Ribárik, G., Ungár, T., and Gubicza, J. (2001). “MWP-fit: A program for multiple whole-profile fitting of diffraction peak profiles by ab initio theoretical functions,” J. Appl. Crystallogr.JACGAR 34, 669676.10.1107/S0021889801011451CrossRefGoogle Scholar
Scardi, P. and Leoni, M. (2002). “Whole powder pattern modelling,” Acta Crystallogr., Sect. A: Found. Crystallogr.ACACEQ A58, 190200.10.1107/S0108767301021298CrossRefGoogle Scholar
Scardi, P., Leoni, M., and Dong, Y. H. (2000). “Whole diffraction pattern-fitting of polycrystalline fcc materials based on microstructure,” Eur. Phys. J. BEPJBFY 18, 2330.10.1007/s100510070073CrossRefGoogle Scholar
Schrerrer, P. (1918), Bestimmung der Grosse und der inneren Struktur von Kolloidtelchen mittels Rontgenstrahlen,” Nachr. Gött., Vol. 2, pp. 98100.Google Scholar
Stokes, A. R. and Wilson, A. J. C. (1944) “The diffraction of X-rays by distorted crystal aggregates,” Proc. Phys. Soc. London 56, 174181.10.1080/10238160108200131.CrossRefGoogle Scholar
Strunz, P., Lukáš, P., Mikula, P., Wagner, V., Kouřil, Z., and Vrána, M. (1998). “Data evaluation procedure for energy-dispersive neutron-transmission-diffraction geometry,” Proceedings of the Fifth International Conference on Residual Stresses (ICRS-5), Linköping, Sweden, Vol. 2, pp. 688693.Google Scholar
Strunz, P., Lukáš, P., and Neov, D. (2001). “Data evaluation procedure for high-resolution neutron diffraction methods,” J. Neutron Res.JNREFM 9, 99106.10.1080/10238160108200131CrossRefGoogle Scholar
Tomota, Y., Lukáš, P., Harjo, S., Park, J. H., Tsutchida, N., and Neov, D. (2003). “In situ neutron diffraction study of IF and ultra low carbon steels upon tensile deformation,” Acta Mater.ACMAFD 51, 819830.10.1016/S1359-6454(02)00473-1CrossRefGoogle Scholar
Ungár, T., Dragomir, I., Révész, A., and Borbély, A. (1999). “The contrast factors of dislocations in cubic crystals: The dislocation model of strain anisotropy in practice,” J. Appl. Crystallogr.JACGAR 32, 9921002.10.1107/S0021889899009334CrossRefGoogle Scholar
Warren, B. E. and Averbach, B. L. (1950). “The effect of cold-work distortion on X-ray patterns,” J. Appl. Phys.JAPIAU 21, 595597.10.1063/1.1699713CrossRefGoogle Scholar
Warren, B. E. and Averbach, B. L. (1952). “The separation of cold-work distortion and particle size broadening in X-ray patterns,” J. Appl. Phys.JAPIAU 23, 497.10.1063/1.1702234CrossRefGoogle Scholar
Wilkens, M. (1970). “The determination of density and distribution of dislocations in deformed single crystals from broadened X-ray diffraction profiles,” Phys. Status Solidi APSSABA 2, 359370.10.1002/pssa.19700020224CrossRefGoogle Scholar
Williamson, G. K. and Hall, W. H. (1953). “X-ray line broadening from filed aluminium and wolfram,” Acta Metall.AMETAR 1, 2231.10.1016/0001-6160(53)90006-6CrossRefGoogle Scholar