Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T15:53:58.241Z Has data issue: false hasContentIssue false

Distorted chiolite crystal structures of α-Na5M3F14 (M=Cr,Fe,Ga) studied by X-ray powder diffraction

Published online by Cambridge University Press:  06 March 2012

A. Le Bail*
Affiliation:
Laboratoire des Fluorures, CNRS UMR 6010, Université du Maine, Avenue O. Messiaen, 72085 Le Mans Cedex 9, France
A.-M. Mercier
Affiliation:
Laboratoire des Fluorures, CNRS UMR 6010, Université du Maine, Avenue O. Messiaen, 72085 Le Mans Cedex 9, France
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

The crystal structures of the chiolite-related room temperature phases α-Na5M3F14 (MIII=Cr,Fe,Ga) are determined. For all of them, the space group is P21/n, Z=2; a=10.5096(3) Å, b=7.2253(2) Å, c=7.2713(2) Å, β=90.6753(7)° (M=Cr); a=10.4342(7) Å, b=7.3418(6) Å, c=7.4023(6) Å, β=90.799(5)° (M=Fe), and a=10.4052(1) Å, b=7.2251(1) Å, c=7.2689(1), β=90.6640(4)° (M=Ga). Rietveld refinements produce final RF factors 0.036, 0.033, and 0.035, and RWP factors, 0.125, 0.116, and 0.096, for MIII=Cr, Fe, and Ga, respectively. The MF6 polyhedra in the defective isolated perovskite-like layers deviate very few from perfect octahedra. Subtle octahedra tiltings lead to the symmetry decrease from the P4/mnc space group adopted by the Na5Al3F14 chiolite aristotype to the P21/n space group adopted by the title series. Facile twinning precluded till now the precise characterization of these compounds.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Babel, D., and Tressaud, A. (1985). “Crystal chemistry of fluorides,” in Inorganic Solid Fluorides, edited by P. Hagenmuller (Academic, New York), pp. 77–203.Google Scholar
Brosset, C. (1938). “Die kristallstruktur des Chioliths,” Z. Anorg. Allg. Chem. ZAACAB 238, 201208. zaa, ZAACAB CrossRefGoogle Scholar
Chassaing, J. (1968). “Fluorides of gallium and an alkali metal. Double and triple salts,” Rev. Chim. Miner. RVCMA8 5, 11151154. rvm, RVCMA8 Google Scholar
Dance, J. M., and Ravez, J. (1979). “Symétries et propriétés physiques des phases de type chiolite,” C. R. Acad. Sci. URSS DANKAS 289, 247250. cqu, DANKAS Google Scholar
DeWolf, P. M. (1968). “A simplified criterion for the reliability of a powder pattern indexing,” J. Appl. Crystallogr. JACGAR 1, 108113. acr, JACGAR CrossRefGoogle Scholar
Dong, C. (1999). “PowderX: Windows-95-based program for powder X-ray diffraction data processing,” J. Appl. Crystallogr. JACGAR 32, 838. acr, JACGAR CrossRefGoogle Scholar
Jacoboni, C., Leblé, A., and Rousseau, J. J. (1981). “Determination précise de la structure de la chiolite Na5Al3F14 et étude par R.P.E. de Na5Al3F14:Cr3+,J. Solid State Chem. JSSCBI 36, 297304. jss, JSSCBI CrossRefGoogle Scholar
Knox, K., and Geller, S. (1958). “Ferrimagnetic fluoride–Na5Fe3F14,Phys. Rev. Lett. PRLTAO 110, 771772. prl, PRLTAO Google Scholar
Le Bail, A., Duroy, H., and Fourquet, J. L. (1988). “Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction,” Mater. Res. Bull. MRBUAC 23, 447452. mrb, MRBUAC CrossRefGoogle Scholar
Miranday, J. P., Férey, G., Jacoboni, C., Dance, J. M., Tressaud, A., and de Pape, R. (1975). “Croissance cristalline, polymorphisme et propriétés magnétiques de Na5Cr3F14,Rev. Chim. Miner. RVCMA8 12, 187192. rvm, RVCMA8 Google Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. JACGAR 2, 6571. acr, JACGAR CrossRefGoogle Scholar
Rodriguez-Carvajal, J. (1990). “FULLPROF: A program for Rietveld refinement and pattern-matching analysis,” Abstracts of the meeting Powder Diffraction, Toulouse, France, pp. 127–128.Google Scholar
Roisnel, T., and Rodriguez-Carvajal, J. (2001). “WinPLOTR: A windows tool for powder diffraction pattern analysis,” Mater. Sci. Forum MSFOEP 378–381, 118123. msf, MSFOEP CrossRefGoogle Scholar
Sheldrick, G. M. (1997). “SHELXS97. Program for solution of crystal structures,” University of Göttingen, Germany.Google Scholar
Smith, G. S., and Snyder, R. L. (1979). “FN: A criterion for rating powder diffraction pattern and evaluating the reliability of powder pattern indexing,” J. Appl. Crystallogr. JACGAR 12, 6085. acr, JACGAR CrossRefGoogle Scholar
Vlasse, M., Menil, F., Moriliere, C., Dance, J. M., Tressaud, A., and Portier, J. (1976). “Etude cristallographique et par effet Mössbauer du fluorure ferrimagnétique Na5Fe3F14γ,J. Solid State Chem. JSSCBI 17, 291298. jss, JSSCBI CrossRefGoogle Scholar
Werner, P. E., Eriksson, L., and Westdahl, M. (1985). “TREOR, a semi-exhaustive trial-and-error powder indexing program for all symmetries,” J. Appl. Crystallogr. JACGAR 18, 367370. acr, JACGAR CrossRefGoogle Scholar