Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Ungár, T.
2003.
The Meaning of Size Obtained from Broadened X‐ray Diffraction Peaks.
Advanced Engineering Materials,
Vol. 5,
Issue. 5,
p.
323.
Armstrong, N.
and
Lynch, P.
2004.
Diffraction Analysis of the Microstructure of Materials.
Vol. 68,
Issue. ,
p.
249.
Dragomir, Iuliana C.
Borbély, András
and
Ungár, Tamás
2004.
Contrast Factors and Character of Dislocations in Cubic and Hexagonal Crystals.
Materials Science Forum,
Vol. 443-444,
Issue. ,
p.
95.
Dragomir, I.C.
Gheorghe, M.
Thadhani, N.
and
Snyder, R.L.
2005.
X-ray peak profile analysis of crystallite size distribution and dislocation type and density evolution in nano-structured Cu obtained by deformation at liquid nitrogen temperature.
Materials Science and Engineering: A,
Vol. 402,
Issue. 1-2,
p.
158.
Dragomir-Cernatescu, I.
Gheorghe, M.
Thadhani, N.
and
Snyder, R. L.
2005.
Dislocation densities and character evolution in copper deformed by rolling under liquid nitrogen from X-ray peak profile analysis.
Powder Diffraction,
Vol. 20,
Issue. 02,
p.
109.
Ungár, Tamás
2007.
Characterization of nanocrystalline materials by X-ray line profile analysis.
Journal of Materials Science,
Vol. 42,
Issue. 5,
p.
1584.
Mittemeijer, Eric J.
and
Welzel, Udo
2008.
The “state of the art” of the diffraction analysis of crystallite size and lattice strain.
Zeitschrift für Kristallographie,
Vol. 223,
Issue. 9,
p.
552.
Scardi, P.
2008.
Recent advancements in Whole Powder Pattern Modelling.
Zeitschrift für Kristallographie Supplements,
Vol. 2008,
Issue. 27,
p.
101.
Mittemeijer, Eric J.
and
Welzel, Udo
2012.
Modern Diffraction Methods.
p.
87.
Jóni, B.
Schafler, E.
Zehetbauer, M.
Tichy, G.
and
Ungár, T.
2013.
Correlation between the microstructure studied by X-ray line profile analysis and the strength of high-pressure-torsion processed Nb and Ta.
Acta Materialia,
Vol. 61,
Issue. 2,
p.
632.
Raptopoulos, Luciano Santos Constantin
Castello-Branco, Gilberto Alexandre
Bacaltchuk, Cristiane Maria Basto
Dragomir-Cernatescu, Iuliana
and
Garmestani, Hamid
2013.
Evolution and Prediction of Texture in Commercially Pure Warm Rolled Titanium.
Materials Science Forum,
Vol. 758,
Issue. ,
p.
99.
Salih, M.Z.
Uhlarz, M.
Pyczak, F.
Brokmeier, H.-G.
Weidenfeller, B.
Al-hamdany, N.
Gan, W.M.
Zhong, Z.Y.
and
Schell, N.
2015.
The effect of magnetic annealing on crystallographic texture and magnetic properties of Fe-2.6% Si.
Journal of Magnetism and Magnetic Materials,
Vol. 381,
Issue. ,
p.
350.
Kurlov, A. S.
Bobrikov, I. A.
Balagurov, A. M.
and
Gusev, A. I.
2015.
Neutron diffraction study of nanocrystalline NbC0.93 powders and the anisotropy of deformation distortions.
JETP Letters,
Vol. 100,
Issue. 10,
p.
629.
Kurlov, A. S.
Balagurov, A. M.
Bobrikov, I. A.
and
Gusev, A. I.
2016.
Microstructure of nanocrystalline powders of nonstoichiometric vanadium VC0.875 and niobium NbC0.93 carbides.
Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques,
Vol. 10,
Issue. 6,
p.
1136.
Dutta, Argha
Gayathri, N.
Neogy, S.
and
Mukherjee, P.
2018.
Microstructural characterisation of proton irradiated niobium using X-ray diffraction technique.
Philosophical Magazine,
Vol. 98,
Issue. 12,
p.
1031.
Scardi, Paolo
Azanza Ricardo, Cristy L.
Perez-Demydenko, Camilo
and
Coelho, Alan A.
2018.
Whole powder pattern modelling macros for TOPAS
.
Journal of Applied Crystallography,
Vol. 51,
Issue. 6,
p.
1752.
Fan, Zhijian
Jóni, Bertalan
Ribárik, Gábor
Ódor, Éva
Fogarassy, Zs
and
Ungár, Tamás
2019.
The Microstructure and strength of a V–5Cr–5Ti alloy processed by high pressure torsion.
Materials Science and Engineering: A,
Vol. 758,
Issue. ,
p.
139.
Gusev, A I
2020.
High-energy ball milling of nonstoichiometric compounds.
Physics-Uspekhi,
Vol. 63,
Issue. 4,
p.
342.
Gusev, Aleksandr I.
2020.
High-energy ball milling of nonstoichiometric compounds.
Uspekhi Fizicheskih Nauk,
Vol. 190,
Issue. 04,
p.
371.
Gusev, Aleksandr I.
2020.
Anisotropy of microstructure and elastic properties of niobium carbide nanopowders.
Solid State Sciences,
Vol. 100,
Issue. ,
p.
106092.