Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-24T00:53:03.019Z Has data issue: false hasContentIssue false

Crystallite size distribution by two-dimensional XRD

Published online by Cambridge University Press:  07 April 2022

Bob B. He*
Affiliation:
Bruker AXS, Madison, WI, USA
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

The crystallite size distribution is an important parameter affecting the processing and properties of materials or products containing crystallites. The X-ray diffraction pattern collected with a two-dimensional detector may contain one or several spotty diffraction rings when an appropriate X-ray beam size is used. The spottiness of the diffraction ring is related to the size, size distribution, and orientation distribution of the crystallites. The intensity of a diffraction spot may represent its volume or size of a crystallite when a perfect Bragg condition is met. This paper introduces the algorithms and procedure to evaluate crystallite size distribution from a 2D diffraction pattern by rocking scan.

Type
Instrumentation, Analysis and Laboratory Developments
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of International Centre for Diffraction Data

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bramble, M. S., Flemming, R. L., and McCausland, P. J. A. (2015). “Grain size measurement from two-dimensional micro-X-ray diffraction: laboratory application of a radial integration technique,” Am. Mineral. 100, 18991911.CrossRefGoogle Scholar
Cullity, B. D. (1978). Elements of X-Ray Diffraction (Addison-Wesley, Reading, MA), 2nd ed., p. 281.Google Scholar
Hadian-Jazi, M., Sadri, A., Barty, A., Yefanov, O., Galchenkova, M., Oberthuer, D., Komadina, D., Brehm, W., Kirkwood, H., Mills, G., de Wijn, R., Letrun, R., Kloos, M., Vakili, M., Gelisio, L., Darmanin, C., Mancuso, A. P., Chapmand, H. N., and Abbey, B. (2021). “Data reduction for serial crystallography using a robust peak finder,” J. Appl. Crystallogr. 54, 13601378.CrossRefGoogle ScholarPubMed
He, B. B. (2009). Two-Dimensional X-Ray Diffraction (Wiley, New York).CrossRefGoogle Scholar
He, B. B. (2014). “Materials characterization from diffraction intensity distribution in the γ-direction,” Powder Diffr. 29(2), 113117.CrossRefGoogle Scholar
He, B. B. (2018). Two-Dimensional X-Ray Diffraction (Wiley, New York), 2nd ed.CrossRefGoogle Scholar
He, B. B. (2019). “Chapter 2.5: Two-dimensional powder diffraction,” in International Tables for Crystallography, Volume H, Powder Diffraction, edited by Gilmore, C. J., Kaduk, J. A., and Schenk, H. (Wiley, Hoboken, NJ, USA).Google Scholar
Hirsch, P. B. (1952a). “A study of cold-worked aluminium by an X-ray micro-beam technique. II. Measurement of shapes of spots,” Acta Crystallogr. 5, 168172.CrossRefGoogle Scholar
Hirsch, P. B. (1952b). “A study of cold-worked aluminium by an X-ray micro-beam technique. III. The structure of cold-worked aluminium,” Acta Crystallogr. 5, 172175.CrossRefGoogle Scholar
Hirsch, P. B. and Kellar, J. N. (1952). “A study of cold-worked aluminium by an X-ray microbeam technique. I. Measurement of particle volume and misorientations,” Acta Crystallogr. 5, 162167.CrossRefGoogle Scholar
Leoni, M. (2019). “Chapter 5.1: Domain size and domain-size distribution,” in International Tables for Crystallography, Volume H, Powder Diffraction, edited by Gilmore, C. J., Kaduk, J. A., and Schenk, H. (Wiley, Hoboken, NJ, USA).Google Scholar
Neher, S. H., Klein, H., and Kuhs, W. F. (2019). “FXD-CSD-GUI: a graphical user interface for the X-ray-diffraction-based determination of crystallite size distributions,” J. Appl. Crystallogr. 52, 14371439.CrossRefGoogle ScholarPubMed
Rodriguez-Navarro, A. B., Alvarez-Lloret, P., Ortega-Huertas, M., and Rodriguez-Gallego, M. (2006). “Automatic crystal size determination in the micrometer range from spotty X-ray diffraction rings of powder samples,” J. Am. Ceram. Soc. 89(7), 22322238.Google Scholar
Scherrer, P. (1918). “Bestimmung der grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen,” Nachr. Ges. Wiss. Göttingen 1918, 98100.Google Scholar
Schlichting, I. (2015). “Serial femtosecond crystallography: the first five years,” IUCrj 2, 246255.CrossRefGoogle ScholarPubMed
Stokes, A. R. and Wilson, A. J. C. (1942). “A method of calculating the integral breadths of Debye–Scherrer lines,” Math. Proc. Cambridge Philos. Soc. 38, 313322.CrossRefGoogle Scholar
Thakral, S., Thakral, N. K., and Suryanarayanan, R. (2017). “Estimation of drug particle size in intact tablets by 2-dimensional X-ray diffractometry,” J. Pharm. Sci., 18. doi:10.1016/j.xphs.2017.08.021.Google ScholarPubMed
Warren, B. E. and Averbach, B. L. (1952). “The separation of cold-work distortion and particle size broadening in X-ray patterns,” J. Appl. Phys. 23, 492.CrossRefGoogle Scholar