Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T06:52:12.896Z Has data issue: false hasContentIssue false

The crystal structure of tin sulphate, SnSO4, and comparison with isostructural SrSO4, PbSO4, and BaSO4

Published online by Cambridge University Press:  17 August 2012

Sytle M. Antao*
Affiliation:
Department of Geoscience, University of Calgary, Calgary, Alberta T2N 1N4, Canada
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

The crystal structure of tin (II) sulphate, SnSO4, was obtained by Rietveld refinement using synchrotron high-resolution powder X-ray diffraction (HRPXRD) data. The structure was refined in space group Pbnm. The unit-cell parameters for SnSO4 are a = 7.12322(1), b = 8.81041(1), c = 5.32809(1) Å, and V = 334.383(1) Å3. The average 〈Sn–O〉 [12] distance is 2.9391(4) Å. However, the Sn2+cation has a pyramidal [3]-coordination to O atoms and the average 〈Sn–O〉 [3] = 2.271(1) Å. If Sn is considered as [12]-coordinated, SnSO4 has a structure similar to barite, BaSO4, and its structural parameters are intermediate between those of BaSO4 and PbSO4. The tetrahedral SO4 group has an average 〈S–O〉 [4] = 1.472(1) Å in SnSO4. Comparing SnSO4 with the isostructural SrSO4, PbSO4, and BaSO4, several well-defined trends are observed. The radii, rM, of the M2+(=Sr, Pb, Sn, and Ba) cations and average 〈S–O〉 distances vary linearly with V because of the effective size of the M2+cation. Based on the trend for the isostructural sulphates, the average 〈Sn–O〉 [12] distance is slightly longer than expected because of the lone pair of electrons on the Sn2+cation.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antao, S. M. (2011). “Crystal-structure analysis of four mineral samples of anhydrite, CaSO4, using synchrotron high-resolution powder X-ray diffraction data,” Powder Diffr. 26, 326330.CrossRefGoogle Scholar
Antao, S. M. (2012). “Structural trends for celestite (SrSO4), anglesite (PbSO4), and barite (BaSO4): confirmation of expected variations within the SO4 groups,” Am. Mineral. 97, 661665.CrossRefGoogle Scholar
Antao, S. M. and Hassan, I. (2009). “The orthorhombic structure of CaCO3, SrCO3, PbCO3, and BaCO3: linear structural trends,” Can. Mineral. 47, 12451255.CrossRefGoogle Scholar
Antao, S. M., Hassan, I., Wang, J., Lee, P. L. and Toby, B. H. (2008). “State-of-the-art high-resolution powder X-ray diffraction (HRPXRD) illustrated with Rietveld structure refinement of quartz, sodalite, tremolite, and meionite,” Can. Mineral. 46, 15011509.Google Scholar
Crichton, W. A., Parise, J. B., Antao, S. M., and Grzechnik, A. (2005). “Evidence for monazite-, barite-, and AgMnO4 (distorted barite)-type structures of CaSO4 at high pressure and temperature,” Am. Mineral. 90, 2227.Google Scholar
Donaldson, J. D. and Moser, W. (1960). J. Chem. Soc. 40004003.Google Scholar
Donaldson, J. D. and Puxley, D. C. (1972). “The crystal structure of tin (II) sulphate,” Acta Cryst. B28, 864867.CrossRefGoogle Scholar
Gillespie, R. J. (1967). “Electron-pair repulsions and molecular shape,” Angew. Chem. 79, 885896.Google Scholar
Gillespie, R. J. and Robinson, E. A. (1996). “Electron-domains and the VSEPR model of molecular geometry,” Angew. Chem. 108, 539560.CrossRefGoogle Scholar
Hawthorne, F. C. and Ferguson, R. B. (1975). “Anhydrite sulphates. II. Refinement of the crystal structure of anhydrite,” Can. Mineral. 13, 289292.Google Scholar
Hill, R. J. (1977). “A further refinement of the barite structure,” Can. Mineral. 15, 522526.Google Scholar
Hinrichsen, B., Dinnebier, R. E., Liu, H., and Jansen, M. (2008). “The high pressure crystal structure of tin sulphate: a case study for maximal information recovery from 2D powder diffraction data,” Z. Kristallogr. 223, 195203.CrossRefGoogle Scholar
Jacobsen, S. D., Smyth, J. R., Swope, R. J. and Downs, R. T. (1998). “Rigid-body character of the SO4 groups in celestine, anglesite and barite,” Can. Mineral. 36, 10531060.Google Scholar
James, R. W. and Wood, W. A. (1925). “The crystal structures of barytes, celestine, and anglesite,” Proc. R. Soc. A109, 598620.Google Scholar
Larson, A. C. and Von Dreele, R. B. (2000). General Structure Analysis System (GSAS). Report No. LAUR 86-748, Los Alamos National Laboratory, Los Alamos, NM.Google Scholar
Lee, P. L., Shu, D., Ramanathan, M., Preissner, C., Wang, J., Beno, M. A., Von Dreele, R. B., Ribaud, L., Kurtz, C., Antao, S. M., Jiao, X. and Toby, B. H. (2008). “A twelve-analyzer detector system for high-resolution powder diffraction,” J. Synch. Rad. 15, 427432.CrossRefGoogle ScholarPubMed
Miyake, M., Minato, I., Morikawa, H., Iwai, S.-I (1978). “Crystal structures and sulphate force constants of barite, celestite, and anglesite,” Am. Mineral. 63, 506510.Google Scholar
Rentzeperis, P. J. (1962). “The crystal structure of the anhydrous stannous sulphate,” Z. Kristallogr. 117, 431.Google Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2, 6571.Google Scholar
Shannon, R. D. (1976). “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Cryst. A32, 751767.Google Scholar
Toby, B. H. (2001). “EXPGUI, a graphical user interface for GSAS,” J. Appl. Crystallogr. 34, 210213.Google Scholar
Wang, J., Toby, B. H., Lee, P. L., Ribaud, L., Antao, S. M., Kurtz, C., Ramanathan, M., Von Dreele, R. B. and Beno, M. A. (2008). “A dedicated powder diffraction beamline at the advanced photon source: commissioning and early operational results,” Rev. Sci. Instrum. 79, 085105.CrossRefGoogle ScholarPubMed
Wills, A. S. and Brown, I. D. (1999). VaList. CEA, France. This is a freely available computer program.Google Scholar