Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-27T00:07:41.586Z Has data issue: false hasContentIssue false

Crystal structure of the anticancer drug carmustine determined by X-ray powder diffraction

Published online by Cambridge University Press:  11 May 2021

Carina Schlesinger
Affiliation:
Institute of Inorganic and Analytical Chemistry, Goethe University, Max-von-Laue-Str. 7, 60438Frankfurt am Main, Germany
Edith Alig
Affiliation:
Institute of Inorganic and Analytical Chemistry, Goethe University, Max-von-Laue-Str. 7, 60438Frankfurt am Main, Germany
Martin U. Schmidt*
Affiliation:
Institute of Inorganic and Analytical Chemistry, Goethe University, Max-von-Laue-Str. 7, 60438Frankfurt am Main, Germany
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

The structure of the anticancer drug carmustine (1,3-bis(2-chloroethyl)-1-nitrosourea, C5H9Cl2N3O2) was successfully determined from laboratory X-ray powder diffraction data recorded at 278 K and at 153 K. Carmustine crystallizes in the orthorhombic space group P212121 with Z = 4. The lattice parameters are a = 19.6935(2) Å, b = 9.8338(14) Å, c = 4.63542(6) Å, V = 897.71(2) ų at 153 K, and a = 19.8522(2) Å, b = 9.8843(15) Å, c = 4.69793(6) Å, V = 921.85(2) ų at 278 K. The Rietveld fits are very good, with low R-values and smooth difference curves of calculated and experimental powder data. The molecules form a one-dimensional hydrogen bond pattern. At room temperature, the investigated commercial sample of carmustine was amorphous.

Type
Technical Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of International Centre for Diffraction Data

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boultif, A. and Louër, D. (1991). “Indexing of powder diffraction patterns for low-symmetry lattices by the successive dichotomy method,” J. Appl. Crystallogr. 24, 987993.CrossRefGoogle Scholar
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E., and Orpen, A. G. (2004). “Retrieval of crystallographically-derived molecular geometry information,” J. Chem. Inf. Comput. Sci. 44, 21332144.10.1021/ci049780bCrossRefGoogle ScholarPubMed
Coelho, A. A. (2018). “TOPAS and TOPAS-academic: an optimization program integrating computer algebra and crystallographic objects written in C++,” J. Appl. Crystallogr. 51, 210218.CrossRefGoogle Scholar
David, W. I. F., Shankland, K., van de Streek, J., Pidcock, E., Motherwell, W. D. S., and Cole, J. C. (2006). “DASH: a program for crystal structure determination from powder diffraction data,” J. Appl. Crystallogr. 39, 910915.CrossRefGoogle Scholar
Faria, S. H. D. M., Teleschi, J. G., Teodoro, L., and Almeida, M. O. (2021). “Computational investigation of the carmustine (BCNU) alkylation mechanism using the QTAIM, IQA, and NBO models,” Struct. Chem. 32, 7996.CrossRefGoogle Scholar
Gilday, L. C., Robinson, S. W., Barendt, T. A., Langton, M. J., Mullaney, B. R., and Beer, P. D. (2015). “Halogen bonding in supramolecular chemistry,” Chem. Rev. 115, 71187195.CrossRefGoogle ScholarPubMed
Hadidi, S., Shiri, F., and Norouzibazaz, M. (2019). “A DFT study of the degradation mechanism of anticancer drug carmustine in an aqueous medium,” Struct. Chem. 30, 13151321.CrossRefGoogle Scholar
Pawley, G. S. (1981). “Unit-cell refinement from powder diffraction scans,” J. Appl. Crystallogr. 14, 357361.CrossRefGoogle Scholar
Sakurai, T., Sundaralingam, M., and Jeffrey, G. A. (1963). “A nuclear quadrupole resonance and X-ray study of the crystal structure of 2,5-dichloroaniline,” Acta Crystallogr. 16, 354363.CrossRefGoogle Scholar
Sarkar, A., Karmakar, S., Bhattacharyya, S., Purkait, K., and Mukherjee, A. (2015). “Nitric oxide release by N-(2-chloroethyl)-N-nitrosoureas: a rarely discussed mechanistic path towards their anticancer activity,” RSC Adv. 5, 21372146.CrossRefGoogle Scholar
Stoe & Cie (2005). WinXPow. Stoe & Cie, Darmstadt, Germany.Google Scholar
Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., Darian, E., Guvench, O., Lopes, P., Vorobyov, I., and Mackerell, A. D. Jr. (2010). “CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields,” J. Comput. Chem. 31, 671690.Google ScholarPubMed
Wang, G.-B., Liu, J.-H., Hu, J., and Xue, K. (2017). “MiR-21 enhanced glioma cells resistance to carmustine via decreasing Spry2 expression,” Eur. Rev. Med. Pharmacol. Sci. 21, 50655071.Google ScholarPubMed
Weiss, R. B. and Ijssel, B. F. (1982). “The nitrosoureas: carmustine (BCNU) and lomustine (CCNU),” Cancer Treat. Rev. 9, 313330.10.1016/S0305-7372(82)80043-1CrossRefGoogle Scholar