Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T08:30:01.819Z Has data issue: false hasContentIssue false

Crystal structure of new triple molybdate AgMg3Ga(MoO4)5 from Rietveld refinement

Published online by Cambridge University Press:  25 September 2017

Irina Yu. Kotova
Affiliation:
Baikal Institute of Nature Management, Siberian Branch, Russian Academy of Sciences, Sakh'yanova St. 6, Ulan-Ude, 670047 Buryat Republic, Russia
Aleksandra A. Savina*
Affiliation:
Baikal Institute of Nature Management, Siberian Branch, Russian Academy of Sciences, Sakh'yanova St. 6, Ulan-Ude, 670047 Buryat Republic, Russia
Elena G. Khaikina
Affiliation:
Baikal Institute of Nature Management, Siberian Branch, Russian Academy of Sciences, Sakh'yanova St. 6, Ulan-Ude, 670047 Buryat Republic, Russia Department of Chemistry, Buryat State University, Smolin St. 24a, Ulan-Ude, 670000 Buryat Republic, Russia
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

A polycrystalline sample of a new triple molybdate AgMg3Ga(MoO4)5 was obtained by solid-state reaction techniques. Structural refinement based on X-ray powder diffraction data showed that the crystal structure is isotypic with NaMg3In(MoO4)5 (sp. gr. P$\bar 1$). In the structure pairs of edge-shared (Mg, Ga)O6,  octahedra are connected by common vertices to form a three-dimensional framework. Large framework cavities involve Ag+ cations. The title compound was found to melt at 1079 K.

Type
New Diffraction Data
Copyright
Copyright © International Centre for Diffraction Data 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balsanova, L. V. (2015). “The synthesis of crystals of silver oxide phases based on molybdenum, investigation of their structure and properties,” Russ. Vestnik VSGUTU 5, 6369.Google Scholar
Bouzidi, C., Frigui, W., and Zid, M. F. (2015). “Synthèse et structure crystalline dun matériau noir AgMnII 3(MnIII 0.26Al0.74)(MoO4)5 ,” Acta Crystallogr. E 71, 299304.CrossRefGoogle Scholar
Hermanowicz, K., Maczka, M., Wolcyrz, M., Tomaszewski, P. E., Paściak, M., and Hanuza, J. (2006). “Crystal structure, vibrational properties and luminescence of NaMg3Al(MoO4)5 crystal doped with Cr3+ ions,” J. Solid State Chem. 179, 685695.Google Scholar
Khaikina, E. G., Bazarova, Zh. G., Solodovnikov, S. F., and Klevtsova, R. F. (2011). “Triple molybdates as a basis for new advanced composite materials,” Eng. Ecol. 1, 4854 (in Russian).Google Scholar
Klevtsova, R. F., Vasiliev, A. D., Kozhevnikova, N. M., Glinskaya, L. A., Kruglik, A. I., and Kotova, I. Yu. (1993). “Synthesis and crystal structural study of ternary molybdate NaMg3In(MoO4)5 ,” J. Struct. Chem. 34(5), 784788.Google Scholar
Kotova, I. Yu. (2014). “Phase formation in the Ag2MoO4–CoMoO4–Al2(MoO4)3 system,” Russ. J. Inorg. Chem. 59(8), 10661070.Google Scholar
Kotova, I. Yu. and Korsun, V. P. (2010a). “Phase formation in the Ag2MoO4–MgMoO4–Al2(MoO4)3 ,” Russ. J. Inorg. Chem. 55(6), 10221025.CrossRefGoogle Scholar
Kotova, I. Yu. and Korsun, V. P. (2010b). “Phase formation in the system involving silver, magnesium, and indium molybdates,” Russ. J. Inorg. Chem. 55(12), 20782082.Google Scholar
Kotova, I. Yu., Belov, D. A., and Stefanovich, S. Yu. (2011). “Ag1–x Mg1–x R1+x (MoO4)3 Ag+-conducting NASICON-like phases, where R = Al or Sc and 0≤x≤0.5,” Russ. J. Inorg. Chem. 56(8), 11891193.Google Scholar
Kotova, I. Yu., Solodovnikov, S. F., Solodovnikova, Z. A., Belov, D. A., Stefanovich, S. Yu., Savina, A. A., and Khaikina, E. G. (2016). “New series of triple molybdates AgA 3 R(MoO4)5 (A = Mg, R = Cr, Fe; A = Mn, R = Al, Cr, Fe, Sc, In) with framework structures and mobile silver ion sublattices,” J. Solid State Chem. 238, 121128.Google Scholar
Kozhevnikova, N. M. and Mokhosoev, М. V. (2000). Troinye Molibdaty [Triple Molybdates] (BGU, Ulan-Ude).Google Scholar
Larson, A. C. and Von Dreele, R. B. (2004). General Structure Analysis System (GSAS) (Report LAUR 86-748) . Los Alamos, New Mexico: Los Alamos National Laboratory.Google Scholar
Lazoryak, B. I. and Efremov, V. A. (1987). “The variable-composition Na2x M2 IISc2(1–x)(MoO4)3 phases (M = Zn, Cd, Mg),” Russ. J. Inorg. Chem. 32(3), 652656.Google Scholar
Nasri, R., Chérif, S. F., and Zid, M. F. (2015). “Structure crystalline de la triple molybdate Ag0.90Al1.06Co2.94(MoO4)5 ,” Acta Crystallogr. E 71, 388391.Google Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2, 6571.Google Scholar
Smith, G. S. and Snyder, R. L. (1979). “FN: a criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Crystallogr. 12, 6065.Google Scholar
Toby, B. H. (2001). “EXPGUI, a graphical user interface for GSAS,” J. Appl. Crystallogr. 34, 210213.Google Scholar
Supplementary material: File

Kotova et al supplementary material

Kotova et al supplementary material 1

Download Kotova et al supplementary material(File)
File 262.7 KB
Supplementary material: File

Kotova et al supplementary material

Kotova et al supplementary material 2

Download Kotova et al supplementary material(File)
File 20.5 KB