Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T20:51:02.646Z Has data issue: false hasContentIssue false

Crystal structure of new phosphates Ca9–xPbxEu(PO4)7 from Rietveld refinement

Published online by Cambridge University Press:  23 April 2015

Dina Deyneko*
Affiliation:
Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, d. 1, Moscow, Russia
Sergey Stefanovich
Affiliation:
Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, d. 1, Moscow, Russia
Bogdan Lazoryak
Affiliation:
Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, d. 1, Moscow, Russia
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

New phosphates Ca9–xPbxEu(PO4)7 were obtained by solid state reaction techniques at 1213–1253 K in air atmosphere and were found to be isotypic with whitlockite-type β-Ca3(PO4)2. The unit cell parameters were determinate using Le Bail decomposition. Rietveld method structural refining showed that Eu3+ ions are located statistically with calcium in M1, M2, and M3 sites, whereas Pb2+-ions are preferentially located in the M3. Examination of optical second harmonic generation evidences nonlinear optical activity and confirms polar space group R3c.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benhamou, R. A., Bessiere, А., Wallez, G., Viana, B., Elaatmani, M., Daoud, M., and Zegzouti, A. (2009). “New insight in the structure–luminescence relationships of Ca9Eu(PO4)7 ,” J. Solid State Chem. 182, 23192325.Google Scholar
Bessiere, А., Benhamou, R., Wallez, G., and Lecointre, A. (2012). “Site occupancy and mechanisms of thermally stimulated luminescence,” Acta Mater. 60, 66416649.Google Scholar
Deyneko, D. V., Stefanovich, S. Yu., Mosunov, A. V., Baryshnikova, O. V., and Lazoryak, B. I. (2013) “Ca10.5– x Pb x (PO4)7 and Ca9.5– x Pb x M(PO4)7 ferroelectrics with the Whitlockite structure,” Inorg. Mat. 49(8), 865870.Google Scholar
Dickens, B., Schroeder, L. W., and Brown, W. E. (1974). “Crystallographic studies of the role of Mg as a stabilizing impurity in β-Ca3(PO4)2. I. The crystal structure of pure β-Ca3(PO4)2 ,” J. Solid State Chem. 10, 232248.Google Scholar
Dusek, M., Petrícek, V., Wunschel, M., Dinnebier, R. E., and Van Smaalen, S. (2001). “Refinement of modulated structures against X-ray powder diffraction data with JANA2000,” J. Appl. Crystallogr. 34, 398404.Google Scholar
Kurts, C. K. and Perry, T. T. (1968). “A powder technique for the evaluation of nonlinear optical materials,” J. Appl. Phys. 39(8), 37983813.Google Scholar
Lazoryak, B. I., Golubev, V. N., Salmon, R., Parent, C., and Hagenmuller, P. (1989). “Distribution of Eu3+ ions in whitlockite-type Ca3– x Eu2 x /3(PO4)2 orthophosphates,” Eur. J. Solid State Inorg. Chem. 26(4), 455463.Google Scholar
Lazoryak, B. I., Vitting, B. N., Fabrichnyi, P. B., Furnes, L., Salmon, R., and Hagenmuller, P. (1990). “Structure of a double phosphate of calcium and europium with the whitlockite structure,” Crystallogr. Rep. 35(4), 14031408.Google Scholar
Lazoryak, B. I., Baryshnikova, O. V., Stefanovich, S. Y., Malakho, A. P., Morozov, V. A., Belik, A. A., Leonidov, I. A., Leonidova, O. N., and Van Tendeloo, G. (2003). “Ferroelectric and ionic-conductive properties of nonlinear-optical vanadate, Ca9Bi(VO4)7 ,” Chem. Mat. 15(15), 30033010.Google Scholar
Lazoryak, B. I., Morozov, V. A., Belik, A. A., Stefanovich, S. Yu., Grebenev, V. V., Leonidov, I. A., Mitberg, E. B., Davydov, S. A., Lebedev, O. I., and Van Tendeloo, G. (2004). “Ferroelectric phase transition in the whitlockite-type Ca9Fe(PO4)7: crystal structure of the paraelectric phase at 923 K,” Solid State Sci. 6, 185195.Google Scholar
Le Bail, A., Duroy, H., and Fourquet, J. L. (1988). “ Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction,” Mater. Res. Bull. 23, 447452.CrossRefGoogle Scholar
Petricek, V., Dusek, M., and Palatinus, L. (2014). “Crystallographic computing system JANA2006: general features,” Z. Kristallogr. 229(5), 345352.CrossRefGoogle Scholar
Sandstrom, M. Н. and Bostrom, D. (2006). “Ca10K(PO4)7 from single-crystal data,” Acta Crystallogr. Sect. E: Struct. Rep. Online 62(12), i253i255.Google Scholar
Shannon, R. D. (1976). “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32, 751764.Google Scholar
Stefanovich, S. Y., Belik, A. A., Azuma, M., Takano, M., Baryshnikova, O. V., Morozov, V. A., Lazoryak, B. I., Lebedev, O. I., and Van Tendeloo, G. (2004). “Antiferroelectric phase transition in Sr9In(PO4)7 ,” Phys. Rev. B., 70(17), 172103.Google Scholar
Yashima, M., Sakai, A., Kamiyama, T., and Hoshikawa, A. (2003). “Crystal structure analysis of b-tricalcium phosphate Ca3(PO4)2 by neutron powder diffraction,” J. Solid State Chem. 175, 272277.Google Scholar
Yonglei, J., Haifeng, L., Ran, Z., Wenzhi, S., Qiang, S., Ran, P., and Chengyu, L. (2014). “Luminescence properties of a new bluish green long-lasting phosphorescence phosphor Ca9Bi(PO4)7:Eu2+,Dy3+ ,” Opt. Mater. 36, 18111816.Google Scholar
Zhang, Z. W., Song, A. J., Maa, M. Z., Zhang, X. Y., Yue, Y., and Liu, R. P. (2014). “A novel white emission in Ca8MgBi(PO4)7:Dy3+ single-phase full-color PhosphorJ. Alloys Comp. 601, 231233.CrossRefGoogle Scholar
Supplementary material: File

Deyneko supplementary material S1

Deyneko supplementary material

Download Deyneko supplementary material S1(File)
File 764 KB
Supplementary material: File

Deyneko supplementary material S2

Deyneko supplementary material

Download Deyneko supplementary material S2(File)
File 745.6 KB