Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T02:59:49.684Z Has data issue: false hasContentIssue false

Crystal structure of magnesium chromium vanadate Mg2CrV3O11, a member of the A2BV3O11 vanadate family

Published online by Cambridge University Press:  01 March 2012

A. Worsztynowicz
Affiliation:
Institute of Physics, Szczecin University of Technology, Al. Piastów 48, 70-310 Szczecin, Poland
S. M. Kaczmarek
Affiliation:
Institute of Physics, Szczecin University of Technology, Al. Piastów 48, 70-310 Szczecin, Poland
W. Paszkowicz
Affiliation:
Institute of Physics, P.A.S., Al. Lotnikow 32/46, 02-668 Warsaw, Poland
R. Minikayev
Affiliation:
Institute of Physics, P.A.S., Al. Lotnikow 32/46, 02-668 Warsaw, Poland

Abstract

The crystal structure of recently discovered chromium (III) dimagnesium trivanadate (V) Mg2CrV3O11 was refined using the Rietveld method. The crystal system of Mg2CrV3O11 is triclinic with space group P1 (Mg1.7Zn0.3GaV3O11 type) and lattice parameters a=6.4057(1) Å, b=6.8111(1) Å, c=10.0640(2) Å, α=97.523(1)°, β=103.351(1)°, γ=101.750(1)°, and Z=2. The characteristic feature of compounds in the A2BV3O11 (A=Mg, Zn and B=Ga, Fe, Cr) family is a strong tendency to share the octahedral M(1) and M(2) sites by both divalent A and trivalent B atoms, and the bipyramidal M(3) sites occupied by divalent A ions. In the present refinement, the only constraint assuming full occupancy of the M(1), M(2), and M(3) sites leads to the following Cr/(Cr+Mg) ratios: 0.70(2) at M(1), 0.24(2) at M(2), and 0.03(2) at M(3). These occupancies are discussed and compared to those of isotypic compounds. The values of interatomic distances are found to be comparable with those reported by R. D. Shannon in 1976. Electron paramagnetic resonance has been also analyzed. Two absorption lines with g≈2.0 (type I) and g≈1.98 (type II) have been recorded in the EPR spectra, and attributed to V4+ ions and Cr3+–Cr3+ ion pairs, respectively. The exchange constant J between Cr3+ ions has been calculated.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bérar, J.-F. and Lelann, P. (1991). “E.S.D.’s and Estimated Probable Error Obtained in Rietveld Refinements With Local Correlations, ” J. Appl. Crystallogr.JACGAR10.1107/S0021889890008391 24, 15.CrossRefGoogle Scholar
Gupta, S., Khanijo, N., and Mansingh, A. (1995). “The Influence of V4+ Ion Concentration on the EPR Spectra of Vanadate Glasses, ” J. Non-Cryst. SolidsJNCSBJ10.1016/0022-3093(94)00485-4 181, 5863.Google Scholar
Guskos, N., Wabia, M., Kurzawa, M., Beskrovnyj, A., Likodimos, V., Typek, J., Rychlowska-Himmel, I., and Blonska-Tabero, A. (2003). “Neutron Diffraction Study of Mg2FeV3O11−δ, ” Radiat. Eff. Defects SolidsREDSEI10.1080/1042015021000053015 158, 369374.Google Scholar
Guskos, N., Typek, J., Beskrovnyj, A., Wabia, M., Kurzawa, M., Anagnostakis, E. A., and Gasiorek, G. (2004). “Neutron Studies of Cation Disorder in Zn2FeV3O11−δ, ” J. Alloys Compd.JALCEU10.1016/j.jallcom.2004.01.066 377, 4752.Google Scholar
Kosava, N. V., Vosel, S. V., Anufrienko, V. F., Vasenin, N. T., and Devyatkina, E. T. (2001). “Reduction Processes in the Course of Mechanochemical Synthesis of Li1+xV3O8, ” J. Solid State Chem.JSSCBI 160, 444449.CrossRefGoogle Scholar
Kurzawa, M., Rychlowska-Himmel, I., Bosacka, M., and Dabrowska, G. (2003a). “A New Compound Mg2CrV3O11 and Phase Relations in the MgV2O6–MgCr2O4 System in the Solid State, ” Solid State Phenom.DDBPE8 90–91, 353358.Google Scholar
Kurzawa, M., Rychlowska-Himmel, I., Blonska-Tabero, A., Bosacka, M., and Dabrowska, G. (2003b). “Synthesis and Characterization of New Compounds Ni2CrV3O11 and Zn2CrV3O11, ” Solid State Phenom.DDBPE8 90–91, 347352.CrossRefGoogle Scholar
Müller, C. and Müller-Buschbaum, Hk. (1992). “Zur Kenntnis von Mg2−xZnxGaV3O11 (x=0, 3), ” J. Alloys Compd.JALCEU 185, 163168.CrossRefGoogle Scholar
Müller, C. and Müller-Buschbaum, Hk. (1993). “Zur Kenntnis von Zn2GaV3O11, ” J. Alloys Compd.JALCEU 191, 251253.CrossRefGoogle Scholar
Nilges, M. J. (1979). “Electron Paramagnetic Resonance Studies of Low Symmetry Nickel(I) and Molybdenum(V) Complexes, ” Ph.D. dissertation, University of Illinois, Urbana, Illinois.Google Scholar
Paszkowicz, W. (2005). “Application of a Powder Diffractometer Equipped with a Strip Detector and Johansson Monochromator to Phase Analysis and Structure Refinement, ” Nucl. Instrum. Methods Phys. Res. ANIMAER 551, 162177.Google Scholar
Rodríguez-Carvajal, J. (1993). “Recent Advances in Magnetic Structure Determination by Neutron Powder Diffraction, ” Physica BPHYBE310.1016/0921-4526(93)90108-I 192, 5569.Google Scholar
Rybarczyk, P., Berndt, H., Radnik, J., Pohl, M., Buyevskaya, O., Baerns, M., and Bruckner, A. (2001). “The Structure of Active Sites in Me-V–O Catalysts (Me=Mg, Zn, Pb) and Its Influence on the Catalytic Performance in the Oxidative Dehydrogenation (ODH) of Propane, ” J. Catal.JCTLA5 202, 4558.Google Scholar
Rychlowska-Himmel, I. and Blonska-Tabero, A. (1999). “Studies on the System ZnO–V2O5–Fe2O3 Reactivity of ZnFe2O4 towards ZnV2O6, ” J. Therm Anal. Calorim.JTACF7 56, 205210.CrossRefGoogle Scholar
Shannon, R. D. (1976). “Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides, ” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr.ACACBN10.1107/S0567739476001551 32, 751767.Google Scholar
Wang, X., Vander Griend, D. A., Stern, Ch. L., and Poeppelmeier, K. R. (2000). “Structure and Cation Distribution of New Ternary Vanadates FeMg2V3O11 and FeZn2V3O11, ” J. Alloys Compd.JALCEU10.1016/S0925-8388(99)00662-3 298, 119124.Google Scholar
Weiss, A. and Witte, H. (1983). Kristallstrukture und Chemische Bindung (Verlag Chemie, Weinheim).Google Scholar
Worsztynowicz, A., Kaczmarek, S. M., Kurzawa, M., and Bosacka, M. (2005). “Magnetic Study of Cr3+ Ion in M 2CrV3O11−x (M=Zn, Mg) Compounds, ” J. Solid State Chem.JSSCBI 178, 22312236.Google Scholar