Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-23T05:49:03.875Z Has data issue: false hasContentIssue false

Crystal structure of lubiprostone Polymorph B, C20H32F2O5

Published online by Cambridge University Press:  10 September 2018

James A. Kaduk*
Affiliation:
Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, Illinois 60616 North Central College, 30 N. Brainard St., Naperville, Illinois 60540
Amy M. Gindhart
Affiliation:
ICDD, 12 Campus Blvd., Newtown Square, Pennsylvania 19073-3273
Thomas N. Blanton
Affiliation:
ICDD, 12 Campus Blvd., Newtown Square, Pennsylvania 19073-3273
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

The crystal structure of lubiprostone has been refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Lubiprostone crystallizes in space group P1 (#1) with a = 9.02025(2), b = 10.72121(2), c = 12.32817(4) Å, α = 78.5566(2), β = 69.6858(2), γ = 77.3292(2)°, V = 1081.069(3) Å3, and Z = 2. The two independent molecules occur in an extended conformation, aligned approximately along the c-axis. The hydrophobic side chains are adjacent to each other, resulting in layers parallel to the ac plane. The two carboxylic acid groups form an eight-membered ring, resulting in dimers of the two independent molecules. Each hydroxyl group acts as a hydrogen bond donor to the ketone of the fused ring system. The powder pattern is included in the Powder Diffraction File™ as entry 00-066-1622.

Type
New Diffraction Data
Copyright
Copyright © International Centre for Diffraction Data 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alberico, D., Clayton, J., Gorin, B. I., and Oudenes, J. (2013). “Prostaglandin synthesis and intermediates for use therein,” US Patent 8 513 441.Google Scholar
Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N., and Falcicchio, A. (2013). “EXPO2013: a kit of tools for phasing crystal structures from powder data,” J. Appl. Crystallogr. 46, 12311235.Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L., and Chang, N. L. (1995). “Patterns in hydrogen bonding: functionality and graph set analysis in crystals,” Angew. Chem. Int. Ed. English 34, 15551573.Google Scholar
Bravais, A. (1866). Etudes Cristallographiques (Gauthier Villars, Paris).Google Scholar
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E., and Orpen, A. G. (2004). “Retrieval of crystallographically-derived molecular geometry information,” J. Chem. Inf. Sci. 44, 21332144.Google Scholar
Ceccarelli, A. P. and Kothakonda, K. K. (2014). “Polymorphic forms of lubiprostone,” US Patent 8 785 663.Google Scholar
Dassault Systèmes (2014). Materials Studio 8.0 (BIOVIA, San Diego, CA).Google Scholar
David, W. I. F., Shankland, K., van de Streek, J., Pidcock, E., Motherwell, W. D. S., and Cole, J. C. (2006). “DASH: a program for crystal structure determination from powder diffraction data,” J. Appl. Crystallogr. 39, 910915.Google Scholar
Donnay, J. D. H. and Harker, D. (1937). “A new law of crystal morphology extending the law of Bravais,” Am. Mineral. 22, 446467.Google Scholar
Dovesi, R., Orlando, R., Erba, A., Zicovich-Wilson, C. M., Civalleri, B., Casassa, S., Maschio, L., Ferrabone, M., De La Pierre, M., D-Arco, P., Noël, Y., Causà, M., and Kirtman, B. (2014). “CRYSTAL14: a program for the ab initio investigation of crystalline solids,Int. J. Quantum Chem. 114, 12871317.Google Scholar
Etter, M. C. (1990). “Encoding and decoding hydrogen-bond patterns of organic compounds,” Acc. Chem. Res. 23, 120126.Google Scholar
Favre-Nicolin, V. and Černý, R. (2002). FOX, “free objects for crystallography: a modular approach to ab initio structure determination from powder diffraction,” J. Appl. Crystallogr. 35, 734743.Google Scholar
Fawcett, T. G., Kabekkodu, S. N., Blanton, J. R., and Blanton, T. N. (2017). “Chemical analysis by diffraction: the Powder Diffraction File™,” Powder Diffr. 32, 6371.Google Scholar
Finger, L. W., Cox, D. E., and Jephcoat, A. P. (1994). “A correction for powder diffraction peak asymmetry due to axial divergence,” J. Appl. Crystallogr. 27, 892900.Google Scholar
Friedel, G. (1907). “Etudes sur la loi de Bravais,” Bull. Soc. Fr. Mineral. 30, 326455.Google Scholar
Gatti, C., Saunders, V. R., and Roetti, C. (1994). “Crystal-field effects on the topological properties of the electron-density in molecular crystals – the case of urea,” J. Chem. Phys. 101, 1068610696.Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P., and Ward, S. C. (2016). “The Cambridge Structural Database,” Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 72, 171179.Google Scholar
Kaduk, J. A., Crowder, C. E., Zhong, K., Fawcett, T. G., and Suchomel, M. R. (2014). “Crystal structure of atomoxetine hydrochloride (Strattera), C17H22NOCl,” Powder Diffr. 29, 269273.Google Scholar
Larson, A. C. and Von Dreele, R. B. (2004). General Structure Analysis System, (GSAS), (Los Alamos National Laboratory Report LAUR 86–784).Google Scholar
Lee, P. L., Shu, D., Ramanathan, M., Preissner, C., Wang, J., Beno, M. A., Von Dreele, R. B., Ribaud, L., Kurtz, C., Antao, S. M., Jiao, X., and Toby, B. H. (2008). “A twelve-analyzer detector system for high-resolution powder diffraction,” J. Synchroton. Radiat. 15, 427432.Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J., and Wood, P. A. (2008). “Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures,” J. Appl. Crystallogr. 41, 466470.Google Scholar
MDI (2016). Jade 9.7 (Materials Data. Inc., Livermore, CA).Google Scholar
O'Boyle, N., Banck, M., James, C. A., Morley, C., Vandermeersch, T, and Hutchison, G. R. (2011). “Open Babel: an open chemical toolbox,” J. Chem. Informatics 3, 33.Google Scholar
Peintinger, M. F., Vilela Oliveira, D., and Bredow, T. (2013). “Consistent Gaussian basis sets of triple-zeta valence with polarization quality for solid-state calculations,” J. Comput. Chem. 34, 451459.Google Scholar
Peng, Y. (2014). Powder Diffraction File entry 00-065-1086. ICDD Grant-in-Aid, Tianjin Institute of X-ray Analysis, Nankai District, P. R. China.Google Scholar
Rammohan, A. and Kaduk, J. A. (2018). “Crystal structures of alkali metal (Group 1) citrate salts”, Acta Cryst. Sect. B: Cryst. Eng. Mater. 74, 239252.Google Scholar
Shields, G. P., Raithby, P. R., Allen, F. H., and Motherwell, W. S. (2000). “The assignment and validation of metal oxidation states in the Cambridge Structural Database,” Acta Crystallogr. Sect. B Struct. Sci. 56, 455465.Google Scholar
Silk Scientific (2013). UN-SCAN-IT 7.0 (Silk Scientific Corporation, Orem, UT).Google Scholar
Stephens, P. W. (1999). “Phenomenological model of anisotropic peak broadening in powder diffraction,” J. Appl. Crystallogr. 32, 281289.Google Scholar
Sykes, R. A., McCabe, P., Allen, F. H., Battle, G. M., Bruno, I. J., and Wood, P. A. (2011). “New software for statistical analysis of Cambridge Structural Database data,” J. Appl. Crystallogr. 44, 882886.Google Scholar
Thompson, P., Cox, D. E., and Hastings, J. B. (1987). “Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3,” J. Appl. Crystallogr. 20, 7983.Google Scholar
Toby, B. H. (2001). “EXPGUI, a graphical user interface for GSAS,” J. Appl. Crystallogr. 34, 210213.Google Scholar
van de Streek, J. and Neumann, M. A. (2014). “Validation of molecular crystal structures from powder diffraction data with dispersion-corrected density functional theory (DFT-D),” Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 70, 10201032.Google Scholar
Wang, J., Toby, B. H., Lee, P. L., Ribaud, L., Antao, S. M., Kurtz, C., Ramanathan, M., Von Dreele, R. B., and Beno, M. A. (2008). “A dedicated powder diffraction beamline at the Advanced Photon Source: commissioning and early operational results,” Rev. Sci. Inst. 79, 085105.Google Scholar
Wavefunction, Inc. (2017). Spartan ‘16 Version 2.0.3, Wavefunction Inc., 18401 Von Karman Ave., Suite 370, Irvine CA 92612.Google Scholar
Supplementary material: File

Kaduk et al. supplementary material

Kaduk et al. supplementary material 1

Download Kaduk et al. supplementary material(File)
File 391.1 KB