Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-10T17:06:55.227Z Has data issue: false hasContentIssue false

Crystal structure of levalbuterol hydrochloride polymorph A (Xopenex), C13H22NO3Cl

Published online by Cambridge University Press:  20 May 2015

James A. Kaduk*
Affiliation:
Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, Illinois 60616
Kai Zhong
Affiliation:
ICDD, 12 Campus Blvd., Newtown Square, Pennsylvania 19073-3273
Thomas N. Blanton
Affiliation:
ICDD, 12 Campus Blvd., Newtown Square, Pennsylvania 19073-3273
Stacy Gates
Affiliation:
ICDD, 12 Campus Blvd., Newtown Square, Pennsylvania 19073-3273
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

The crystal structure of levalbuterol hydrochloride polymorph A has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Levalbuterol hydrochloride polymorph A crystallizes in space group P21 (#4) with a = 8.499 352(15), b = 6.511 726(13), c = 13.182 256(25) Å, β = 102.1157(2)°, V = 713.327(2) Å3, and Z = 2. The most prominent feature of the structure is the two different sorts of hydrogen bonds. Both of the ammonium hydrogens and O17–H40 act as donors to Cl18. The graph sets are C1,2(4) and C1,2(7). The result is a zig-zag chain parallel to the b-axis. The two hydroxy groups at the phenyl end of the molecule form another set of chains, both with graph set C1,1(6), also resulting in a chain parallel to the b-axis. The bulk of the molecule connects these chains in the (101) plane to form a three-dimensional network. The powder pattern is included in the Powder Diffraction File™ as entry 00-064-1494.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Accelrys (2013). Materials Studio 7.0 (Accelrys Software Inc., San Diego, CA).Google Scholar
Allen, F. H. (2002). “The Cambridge Structural Database: a quarter of a million crystal structures and rising,” Acta Crystallogr. Sect. B, Struct. Sci. 58, 380388.Google Scholar
Altomare, A., Camalli, M., Cuocci, C., Giacovazzo, C., Moliterni, A., and Rizzi, R. (2009). “EXPO2009: structure solution by powder data in direct and reciprocal space,” J. Appl. Crystallogr. 42(6), 11971202.Google Scholar
Apra, E., Causa, M., Prencipe, M., Dovesi, R., and Saunders, V. R. (1993). “On the structural properties of NaCl: an ab initio study of the B1–B2 phase transition,” J. Phys. Condens. Matter 5(18), 29692976.Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L., and Chang, N. L. (1995). “Patterns in hydrogen bonding: functionality and graph set analysis in crystals,” Angew. Chem. Int. Ed. Engl. 34(15), 15551573.CrossRefGoogle Scholar
Bravais, A. (1866). Etudes Cristallographiques (Gathier Villars, Paris).Google Scholar
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E., and Orpen, A. G. (2004). “Retrieval of crystallographically-derived molecular geometry information,” J. Chem. Inf. Sci. 44, 21332144.Google Scholar
Donnay, J. D. H. and Harker, D. (1937). “A new law of crystal morphology extending the law of Bravais,” Amer. Mineral. 22, 446467.Google Scholar
Dovesi, R., Orlando, R., Civalleri, B., Roetti, C., Saunders, V. R., and Zicovich-Wilson, C. M. (2005). “CRYSTAL: a computational tool for the ab initio study of the electronic properties of crystals,” Z. Kristallogr. 220, 571573.Google Scholar
Etter, M. C. (1990). “Encoding and decoding hydrogen-bond patterns of organic compounds,” Acc. Chem. Res. 23(4), 120126.Google Scholar
Favre-Nicolin, V. and Černý, R. (2002). FOX, “Free Objects for crystallography: a modular approach to ab initio structure determination from powder diffraction,” J. Appl. Crystallogr. 35, 734743.Google Scholar
Friedel, G. (1907). “Etudes sur la loi de Bravais,” Bull. Soc. Fr. Mineral. 30, 326455.Google Scholar
Gatti, C., Saunders, V. R., and Roetti, C. (1994). “Crystal-field effects on the topological properties of the electron-density in molecular crystals – the case of urea,” J. Chem. Phys. 101, 1068610696.Google Scholar
ICDD (2014), PDF-4+ 2014 (Database). International Centre for Diffraction Data, edited by Dr. Kabekkodu, Soorya (Newtown Square, PA, USA).Google Scholar
Jat, K. R. and Khairwa, A. (2013). “Levalbuterol versus albuterol for acute asthma: a systematic review and meta-analysis,” Pulm. Pharmacol. Ther. 26(2), 239–48.Google Scholar
Larson, A. C. and Von Dreele, R. B. (2004). “General structure analysis system, (GSAS)”, Los Alamos National Laboratory Report LAUR 86–784.Google Scholar
Lee, P. L., Shu, D., Ramanathan, M., Preissner, C., Wang, J., Beno, M. A., Von Dreele, R. B., Ribaud, L., Kurtz, C., Antao, S. M., Jiao, X., and Toby, B. H. (2008). “A twelve-analyzer detector system for high-resolution powder diffraction,” J. Synchroton Radiat. 15(5), 427432.Google Scholar
Louër, D. and Boultif, A. (2007). “Powder pattern indexing and the dichotomy algorithm. Zeitschrift fur Kristallographie Supplements,” 2007, 191–196.Google Scholar
Merli, V., Mantovani, S., Bianchi, S., Daverio, P., Spreafico, A., Aronhime, J., and Kovacsne-Mezei, A. (2008). “Levalbuterol Hydrochloride Polymorph A,” U.S. Patent 7,465,831.Google Scholar
Merli, V., Mantovani, S., Bianchi, S., Daverio, P., Spreafico, A., Aronhime, J., and Kovacsne-Mezei, A. (2009). “Levalbuterol Hydrochloride Polymorph B,” U.S. Patent 7,488,758.Google Scholar
O'Boyle, N., Banck, M., James, C. A., Morley, C., Vandermeersch, T., and Hutchison, G. R. (2011). “Open Babel: an open chemical toolbox,” J. Cheminform., 114; doi: 10.1186/1758-2946-3-33.Google ScholarPubMed
Shields, G. P., Raithby, P. R., Allen, F. H., and Motherwell, W. S. (2000). “The assignment and validation of metal oxidation states in the Cambridge Structural Database,” Acta Crystallogr. Sec. B, Struct. Sci. 56(3), 455465.CrossRefGoogle ScholarPubMed
Stephens, P. W. (1999). “Phenomenological model of anisotropic peak broadening in powder diffraction,” J. Appl. Crystallogr. 32, 281289.CrossRefGoogle Scholar
Sykes, R. A., McCabe, P., Allen, F. H., Battle, G. M., Bruno, I. J., and Wood, P. A. (2011). “New software for statistical analysis of Cambridge Structural Database data,” J. Appl. Crystallogr. 44, 882886.CrossRefGoogle Scholar
Wang, J., Toby, B. H., Lee, P. L., Ribaud, L., Antao, S. M., Kurtz, C., Ramanathan, M., Von Dreele, R. B., and Beno, M. A. (2008). “A dedicated powder diffraction beamline at the Advanced Photon Source: Commissioning and early operational results,” Rev. Sci. Inst. 79, 085105.Google Scholar
Wavefunction, Inc. (2013). Spartan ‘14 Version 1.1.0, Wavefunction Inc., 18401 Von Karman Ave., Suite 370, Irvine CA 92612.Google Scholar
Supplementary material: File

Kaduk supplementary material

Kaduk supplementary material 1

Download Kaduk supplementary material(File)
File 2.7 MB
Supplementary material: File

Kaduk supplementary material

Kaduk supplementary material 2

Download Kaduk supplementary material(File)
File 4.7 KB