Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-10T17:14:56.596Z Has data issue: false hasContentIssue false

Crystal structure of baricitinib, C16H17N7O2S

Published online by Cambridge University Press:  18 May 2022

Yewon Lee
Affiliation:
Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
Yulong Wang
Affiliation:
Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
Peter G. Khalifah
Affiliation:
Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
Peter W. Stephens
Affiliation:
Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
James A. Kaduk*
Affiliation:
Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, IL 60616, USA North Central College, 131 S. Loomis St., Naperville, IL 60540, USA
Stacy Gates-Rector
Affiliation:
ICDD, 12 Campus Blvd., Newtown Square, PA 19073-3273, USA
Amy M. Gindhart
Affiliation:
ICDD, 12 Campus Blvd., Newtown Square, PA 19073-3273, USA
Thomas N. Blanton
Affiliation:
ICDD, 12 Campus Blvd., Newtown Square, PA 19073-3273, USA
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

The crystal structure of baricitinib has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional techniques. Baricitinib crystallizes in space group I2/a (#15) with a = 11.81128(11), b = 7.06724(6), c = 42.5293(3) Å, β = 91.9280(4)°, V = 3548.05(5) Å3, and Z = 8. The crystal structure is characterized by hydrogen-bonded double layers parallel to the ab-planes. The dimers form a graph set R2,2(8). The sulfone ends of the molecules reside in the interlayer regions. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™ (PDF®).

Type
New Diffraction Data
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of International Centre for Diffraction Data

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antao, S. M., Hassan, I., Wang, J., Lee, P. L., and Toby, B. H. (2008). “State-of-the-art high-resolution powder X-ray diffraction (HRPXRD) illustrated with Rietveld refinement of quartz, sodalite, tremolite, and meionite,” Can. Mineral. 46, 15011509.CrossRefGoogle Scholar
Bag, P. P., Chen, M., Sun, C. C., and Reddy, C. M. (2012). “Direct correlation among crystal structure, mechanical behaviour and tabletability in a trimorphic molecular compound,” CrystEngComm 14, 38653867.CrossRefGoogle Scholar
Bernstein, J., Davis, R. E., Shimoni, L., and Chang, N. L. (1995). “Patterns in hydrogen bonding: functionality and graph set analysis in crystals,” Angew. Chem., Int. Ed. Engl. 34(15), 15551573.CrossRefGoogle Scholar
Bravais, A. (1866). Etudes Cristallographiques (Gauthier Villars, Paris).Google Scholar
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E., and Orpen, A. G. (2004). “Retrieval of crystallographically-derived molecular geometry information,” J. Chem. Inf. Comput. Sci. 44, 21332144.CrossRefGoogle ScholarPubMed
Coelho, A. A. (2018). “Topas and topas-academic: an optimization program integrating computer algebra and crystallographic objects written in C++,” J. Appl. Crystallogr. 51, 210218.CrossRefGoogle Scholar
Dassault Systèmes (2021). Materials Studio 2021 (BIOVIA, San Diego, CA).Google Scholar
David, W. I. F., Shankland, K., van de Streek, J., Pidcock, E., Motherwell, W. D. S., and Cole, J. C. (2006). “DASH: a program for crystal structure determination from powder diffraction data,” J. Appl. Crystallogr. 39, 910915.CrossRefGoogle Scholar
Dollase, W. A. (1986). “Correction of intensities for preferred orientation in powder diffractometry: application of the March model,” J. Appl. Crystallogr. 19, 267272.CrossRefGoogle Scholar
Donnay, J. D. H., and Harker, D. (1937). “A new law of crystal morphology extending the law of Bravais,” Am. Mineral. 22, 446447.Google Scholar
Dougados, M., van der Heijde, D., Chen, Y.-C., Greenwald, M., Drescher, E., Liu, J., Beattie, S., Witt, S., de la Torre, I., Gaich, C., Rooney, C., Schlichting, D., de Bono, S., and Emery, P. (2017). “Baricitinib in patients with inadequate response or intolerance to conventional synthetic DMARDS: results from the RA-BUILD study,” Ann. Rheum. Dis. 76, 8895.CrossRefGoogle ScholarPubMed
Dovesi, R., Erba, A., Orlando, R., Zicovich-Wilson, C. M., Civalleri, B., Maschio, L., Rerat, M., Casassa, S., Baima, J., Salustro, S., and Kirtman, B. (2018). “Quantum-mechanical condensed matter simulations with CRYSTAL,” Wiley Interdiscip. Rev.: Comput. Mol. Sci. 8, e1360.Google Scholar
Etter, M. C. (1990). “Encoding and decoding hydrogen-bond patterns of organic compounds,” Acc. Chem. Res. 23(4), 120126.CrossRefGoogle Scholar
Friedel, G. (1907). “Etudes sur la loi de bravais,” Bull. Soc. Fr. Mineral. 30, 326455.Google Scholar
Gates-Rector, S., and Blanton, T. (2019). “The Powder Diffraction File: a quality materials characterization database,” Powder Diffr. 39(4), 352360.CrossRefGoogle Scholar
Gatti, C., Saunders, V. R., and Roetti, C. (1994). “Crystal-field effects on the topological properties of the electron-density in molecular crystals - the case of urea,” J. Chem. Phys. 101, 1068610696.CrossRefGoogle Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P., and Ward, S. C. (2016). “The Cambridge Structural Database,” Acta Crystallogr. Sect. B: Struct. Sci., Cryst. Eng. Mater. 72, 171179.CrossRefGoogle ScholarPubMed
Halgren, T. A. (1996). “Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94,” J. Comput. Chem. 17, 490519.3.0.CO;2-P>CrossRefGoogle Scholar
Hirshfeld, F. L. (1977). “Bonded-atom fragments for describing molecular charge densities,” Theor. Chim. Acta 44, 129138.CrossRefGoogle Scholar
Kaduk, J. A., Crowder, C. E., Zhong, K., Fawcett, T. G., and Suchomel, M. R. (2014). “Crystal structure of atomoxetine hydrochloride (strattera), C17H22NOCl,” Powder Diffr. 29(3), 269273.CrossRefGoogle Scholar
Kresse, G., and Furthmüller, J. (1996). “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6, 1550.CrossRefGoogle Scholar
Lee, P. L., Shu, D., Ramanathan, M., Preissner, C., Wang, J., Beno, M. A., Von Dreele, R. B., Ribaud, L., Kurtz, C., Antao, S. M., Jiao, X., and Toby, B. H. (2008). “A twelve-analyzer detector system for high-resolution powder diffraction,” J. Synchrotron Radiat. 15(5), 427432.CrossRefGoogle ScholarPubMed
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M., and Wood, P. A. (2020). “Mercury 4.0: from visualization to design and prediction,” J. Appl. Crystallogr. 53, 226235.CrossRefGoogle ScholarPubMed
March, A. (1932). “Mathematische theorie der regelung nach der korngestalt bei affiner deformation,” Z. Kristallogr. 81, 285297.CrossRefGoogle Scholar
Markham, A. (2017). “Baricitinib: first global approval,” Drugs 77, 697704.CrossRefGoogle ScholarPubMed
Materials Design (2016). MedeA 2.20.4 (Materials Design Inc., Angel Fire, NM).Google Scholar
Pandey, G., Singh, K., and Prasad, M. (2018). “Crystalline form of baricitinib,” US Patent 9.938,283 B2.Google Scholar
Peintinger, M. F., Vilela Oliveira, D., and Bredow, T. (2013). “Consistent Gaussian basis sets of triple-Zeta valence with polarization quality for solid-state calculations,” J. Comput. Chem. 34, 451459.CrossRefGoogle ScholarPubMed
PubChem (2021). National Library of Medicine (US), National Center for Biotechnology Information; 2004. PubChem Compound Summary for CID 44205240, Baricitinib. Available at: https://pubchem.ncbi.nlm.nih.gov/compound/Baricitinib (cited 27 December 2021).Google Scholar
Ren, G., Yi, D., and Yao, X. (2016). “Baricitinib polymorph A and preparation method thereof,” Chinese Patent Application CN105693731A.Google Scholar
Rodgers, J. D., and Shepard, S. (2013). “Azetidine and cyclobutane derivatives and JAK inhibitors,” US Patent 8,420,629 B2.Google Scholar
Sheth, A. R., and Grant, D. J. W. (2005). “Relationship between the structure and properties of pharmaceutical crystals,” KONA Powder Part J. 23, 3648.CrossRefGoogle Scholar
Shields, G. P., Raithby, P. R., Allen, F. H., and Motherwell, W. S. (2000). “The assignment and validation of metal oxidation states in the Cambridge Structural Database,” Acta Crystallogr. Sect. B: Struct. Sci. 56(3), 455465.CrossRefGoogle ScholarPubMed
Spek, A. L. (2009). “Structure validation in chemical crystallography,” Acta Crystallogr. Sect. D: Biol. Crystallogr. 65, 148155.CrossRefGoogle ScholarPubMed
Stebbing, J., Krishnan, V., de Bono, S., Ottaviani, S., Casalini, G., Richardson, P. J., Monteil, V., Lauschke, V. M., Mirazimi, A., Youhanna, S., and Tan, Y. J. (2020). “Mechanism of baricitinib supports artificial intelligence-predicted testing in COVID-19 patients,” EMBO Mol. Med. 12, e12697.CrossRefGoogle ScholarPubMed
Stephens, P. W. (1999). “Phenomenological model of anisotropic peak broadening in powder diffraction,” J. Appl. Crystallogr. 32, 281289.CrossRefGoogle Scholar
Sykes, R. A., McCabe, P., Allen, F. H., Battle, G. M., Bruno, I. J., and Wood, P. A. (2011). “New software for statistical analysis of Cambridge Structural Database data,” J. Appl. Crystallogr. 44, 882886.CrossRefGoogle Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D., and Spackman, M. A. (2017). CrystalExplorer17 (University of Western Australia): Available at: http://hirshfeldsurface.net.Google Scholar
van de Streek, J., and Neumann, M. A. (2014). “Validation of molecular crystal structures from powder diffraction data with dispersion-corrected density functional theory (DFT-D),” Acta Crystallogr. Sect. B: Struct. Sci., Cryst. Eng. Mater. 70(6), 10201032.CrossRefGoogle Scholar
Wang, J., Toby, B. H., Lee, P. L., Ribaud, L., Antao, S. M., Kurtz, C., Ramanathan, M., Von Dreele, R. B., and Beno, M. A. (2008). “A dedicated powder diffraction beamline at the advanced photon source: commissioning and early operational results,” Rev. Sci. Instrum. 79, 085105.CrossRefGoogle ScholarPubMed
Wavefunction, Inc. (2020). Spartan ‘18 Version 1.4.5 (Wavefunction Inc., 18401 Von Karman Ave., Suite 370, Irvine, CA 92612).Google Scholar
Zhang, G. G., Law, D., Schmitt, E. A., and Qiu, Y. (2004). “Phase transformation considerations during process development and manufacture of solid oral dosage forms,” Adv. Drug Deliv. Rev. 56, 371390.CrossRefGoogle ScholarPubMed