Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T18:55:34.578Z Has data issue: false hasContentIssue false

Crystal structure of a birefringent andradite–grossular from Crowsnest Pass, Alberta, Canada

Published online by Cambridge University Press:  28 October 2013

Sytle M. Antao*
Affiliation:
Department of Geoscience, University of Calgary, Calgary, Alberta T2N 1N4, Canada
Allison M. Klincker
Affiliation:
Department of Geoscience, University of Calgary, Calgary, Alberta T2N 1N4, Canada
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected].

Abstract

The structure of a birefringent andradite–grossular sample was refined using single-crystal X-ray diffraction (SCD) and synchrotron high-resolution powder X-ray diffraction (HRPXRD) data. Electron-microprobe results indicate a homogeneous composition of {Ca2.88Mn2+0.06Mg0.04Fe2+0.03}Σ3[Fe3+1.29Al0.49Ti4+0.17Fe2+0.06] Σ2(Si2.89Al0.11) Σ3O12. The Rietveld refinement reduced χ2 = 1.384 and overall R (F2) = 0.0315. The HRPXRD data show that the sample contains three phases. For phase-1, the weight %, unit-cell parameter (Å), distances (Å), and site occupancy factor (sof) are 62.85(7)%, a = 12.000 06(2), average <Ca–O> = 2.4196, Fe–O = 1.9882(5), Si–O = 1.6542(6) Å, Ca(sof) = 0.970(2), Fe(sof) = 0.763(1), and Si(sof) = 0.954(2). The corresponding data for phase-2 are 19.14(9)%, a = 12.049 51(2), average <Ca–O> = 2.427, Fe–O = 1.999(1), Si–O = 1.665(1) Å, Ca(sof) = 0.928(4), Fe(sof) = 0.825(3), and Si(sof) = 0.964(4). The corresponding data for phase-3 are 18.01(9)%, a = 12.019 68(3), average <Ca–O> = 2.424, Fe–O = 1.992(2), Si–O = 1.658(2) Å, Ca(sof) = 0.896(5), Fe(sof) = 0.754(4), and Si(sof) = 0.936(5). The fine-scale coexistence of the three phases causes strain that arises from the unit-cell and bond distances differences, and gives rise to strain-induced birefringence. The results from the SCD are similar to the dominant phase-1 obtained by the HRPXRD, but the SCD misses the minor phases.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamo, I., Gatta, G. D., Rotitoti, N., Diella, V., and Pavese, A. (2010). “Green andradite stones: gemological and mineralogical characterisation,” Eur. J. Mineral. 23, 91100.Google Scholar
Antao, S. M. (2013a). “Three cubic phases intergrown in a birefringent andradite–grossular garnet and their implications,” Phys. Chem. Miner. 40, 705716.Google Scholar
Antao, S. M. (2013b). “The mystery of birefringent garnet: is the symmetry lower than cubic?,” Powder Diffr. doi: 10.1017/S0885715613000523.Google Scholar
Antao, S. M. and Hassan, I. (2010). “A two-phase intergrowth of genthelvite from Mont Saint-Hilaire, Quebec,” Can. Mineral. 48, 12171223.Google Scholar
Antao, S. M. and Klincker, A. M. (2013). “Origin of birefringence in andradite from Arizona, Madagascar, and Iran,” Phys. Chem. Miner. 40, 575586.CrossRefGoogle Scholar
Antao, S. M., Hassan, I., Wang, J., Lee, P. L., and Toby, B. H. (2008). “State-of-the-art high-resolution powder X-ray diffraction (HRPXRD) illustrated with Rietveld structure refinement of quartz, sodalite, tremolite, and meionite.,” Can. Mineral. 46, 15011509.CrossRefGoogle Scholar
Antao, S. M., Klincker, A. M., and Round, S. A. (2013a). “Origin of birefringence in common silicate garnet: intergrowth of different cubic phases,” Am. Geophys. Union Conference, Cancun, Mexico, 14–17 May, 2013.Google Scholar
Antao, S. M., Klincker, A. M., and Round, S. A. (2013b). “Some garnets are cubic and birefringent, why?,” Conference, Hawaii, USA, 20–24 July, 2013.Google Scholar
Armbruster, T. (1995). “Structure refinement of hydrous andradite, Ca3Fe1.54Mn0.02Al0.26(SiO4)1.65(O4H4)1.35, from the Wessels mine, Kalahari manganese field, South Africa,” Eur. J. Mineral. 7, 12211225.Google Scholar
Armbruster, T., Birrer, J., Libowitzky, E., and Beran, A. (1998). “Crystal chemistry of Ti-bearing andradites,” Eur. J. Mineral. 10, 907921.Google Scholar
Baikie, T., Schreyer, M. K., Wong, C. L., Pramana, S. S., Klooster, W. T., Ferraris, C., McIntyre, G. J., and White, T. J. (2012). “A multi-domain gem-grade Brazilian apatite,” Am. Mineral. 97, 15741581.Google Scholar
Basso, R., Cimmino, F., and Messiga, B. (1984a). “Crystal chemical and petrological study of hydrogarnets from a Fe-gabbro metarodingite (Gruppo Di Voltri, Western Liguria, Italy),” Neues Jahrbuch Fur Mineralogie-Abhandlungen 150, 247258.Google Scholar
Basso, R., Cimmino, F., and Messiga, B. (1984b). “Crystal-chemistry of hydrogarnets from three different microstructural sites of a basaltic metarodingite from the Voltri-Massif (Western Liguria, Italy),” Neues Jahrbuch Fur Mineralogie-Abhandlungen 148, 246258.Google Scholar
Chakhmouradian, A. R. and McCammon, C. A. (2005). “Schorlomite: a discussion of the crystal chemistry, formula, and inter-species boundaries,” Phys. Chem. Miner. 32, 277289.Google Scholar
Chakhmouradian, A. R., Cooper, M. A., Medici, L., Hawthorne, F. C., and Adar, F. (2008). “Fluorine-rich hibschite from silicocarbonatite, Afrikanda complex, Russia: crystal chemistry and conditions of crystallization,” Can. Mineral. 46, 10331042.Google Scholar
Dingwell, D. B. and Brearley, M. (1985). “Mineral chemistry of igneous melanite garnets from analcite-bearing volcanic rocks, Alberta, Canada,” Contrib. Mineral. Petrol. 90, 2935.Google Scholar
Ferro, O., Galli, E., Papp, G., Quartieri, S., Szakall, S., and Vezzalini, G. (2003). “A new occurrence of katoite and re-examination of the hydrogrossular group,” Eur. J. Mineral. 15, 419426.CrossRefGoogle Scholar
Finger, L. W., Cox, D. E., and Jephcoat, A. P. (1994). “A correction for powder diffraction peak asymmetry due to axial divergence,” J. Appl. Crystall. 27, 892900.Google Scholar
Frank-Kamenetskaya, O. V., Rozhdestvenskaya, L. V., Shtukenberg, A. G., Bannova, I. I., and Skalkina, Y. A. (2007). “Dissymmetrization of crystal structures of grossular–andradite garnets Ca3(Al, Fe)2(SiO4)3 ,” Struct. Chem. 18, 493503.Google Scholar
Ganguly, J., Cheng, W., and O'Neill, H. S. C. (1993). “Syntheses, volume, and structural changes of garnets in the pyrope–grossular join: implications for stability and mixing properties,” Am. Mineral. 78, 583593.Google Scholar
Griffen, D. T., Hatch, D. M., Phillips, W. R., and Kulaksiz, S. (1992). “Crystal chemistry and symmetry of a birefringent tetragonal pyralspite75-grandite25 garnet,” Am. Mineral. 77, 399406.Google Scholar
Heinemann, S., Sharp, T. G., Seifert, F., and Rubie, D. C. (1997). “The cubic-tetragonal phase transition in the system majorite (Mg4Si4O12) – pyrope (Mg3Al2Si3O12), and garnet symmetry in the Earth's transition zone,” Phys. Chem. Miner. 24, 206221.CrossRefGoogle Scholar
Hilton, E. (2000). Composition and Structure of Titanian Andradite from Magmatic and Hydrothermal Environments (University of British Columbia).Google Scholar
Larson, A. C. and Von Dreele, R. B. (2000). General Structure Analysis System (GSAS). (Report LAUR 86-748). Los Alamos National Laboratory.Google Scholar
Lee, P. L., Shu, D., Ramanathan, M., Preissner, C., Wang, J., Beno, M. A., Von Dreele, R. B., Ribaud, L., Kurtz, C., Antao, S. M., Jiao, X., and Toby, B. H. (2008). “A twelve-analyzer detector system for high-resolution powder diffraction,” J. Synchrotron Radiat. 15, 427432.CrossRefGoogle ScholarPubMed
Locock, A. J. (2008). “An excel spreadsheet to recast analyses of garnet into end-member components, and a synopsis of the crystal chemistry of natural silicate garnets,” Comput. Geosci. 34, 17691780.CrossRefGoogle Scholar
Nakatsuka, A., Yoshiasa, A., Yamanaka, T., Ohtaka, O., Katsura, T., and Ito, E. (1999). “Symmetry change of majorite solid-solution in the system Mg3Al2Si3O12-MgSiO3 ,” Am. Mineral. 84, 11351143.Google Scholar
Novak, G. A. and Gibbs, G. V. (1971). “The crystal chemistry of the silicate garnets,” Am. Mineral. 56, 17691780.Google Scholar
Otwinowski, Z. and Minor, W. (1997). “Processing of X-ray diffraction data collected in oscillation mode,” In Methods in Enzymology: Macromolecular Crystallography, part A, V. 276, Eds. Carter, C.W. Jr. & Sweet, R.M., (Academic Press), pp. 307326.Google Scholar
Parise, J. B., Wang, Y., Gwanmesia, G. D., Zhang, J., Sinelnikov, Y., Chmielowski, J., Weidner, D. J., and Liebermann, R. C. (1996). “The symmetry of garnets on the pyrope (Mg3Al2Si3O12) – majorite (MgSiO3) join,” Geophys. Res. Lett. 23, 37993802.Google Scholar
Peterson, R. C., Locock, A. J., and Luth, R. W. (1995). “Positional disorder of oxygen in garnet: the crystal-structure refinement of schorlomite,” Can. Mineral. 33, 627631.Google Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2, 6571.Google Scholar
Sacerdoti, M. and Passaglia, E. (1985). “The crystal structure of katoite and implications within the hydrogrossular group of minerals,” Bull. Miner. 108, 18.Google Scholar
Shannon, R. D. (1976). “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A32, 751767.CrossRefGoogle Scholar
Sheldrick, G. M. (1997). SHELXL-97-1. Program for crystal structure determination. Institut für Anorg. Chemie, Univ. of Göttingen, Göttingen, Germany.Google Scholar
Shtukenberg, A. G., Popov, D. Y., and Punin, Y. O. (2005). “Growth ordering and anomalous birefringence in ugrandite garnets,” Mineral. Mag. 69, 537550.Google Scholar
Smyth, J. R., Madel, R. E., McCormick, T. C., Munoz, J. L., and Rossman, G. R. (1990). “Crystal-structure refinement of a F-bearing spessartine garnet,” Am. Mineral. 75, 314318.Google Scholar
Takéuchi, Y., Haga, N., Umizu, S., and Sato, G. (1982). “The derivative structure of silicate garnets in grandite,” Z. Kristallogr. 158, 5399.Google Scholar
Toby, B. H. (2001). “EXPGUI, a graphical user interface for GSAS,” J. Appl. Crystallogr. 34, 210213.Google Scholar
Wang, J., Toby, B. H., Lee, P. L., Ribaud, L., Antao, S. M., Kurtz, C., Ramanathan, M., Von Dreele, R. B., and Beno, M. A. (2008). “A dedicated powder diffraction beamline at the advanced photon source: commissioning and early operational results,” Rev. Sci. Instrum. 79, 085105.Google Scholar
Wildner, M. and Andrut, M. (2001). “The crystal chemistry of birefringent natural uvarovites: part II. Single-crystal X-ray structures,” Am. Mineral. 86, 12311251.CrossRefGoogle Scholar
Supplementary material: File

Antao Supplementary Material

Supplementary Material

Download Antao Supplementary Material(File)
File 11.2 KB