Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-23T05:34:28.745Z Has data issue: false hasContentIssue false

Crystal structure and X-ray diffraction data of a new hexagonal perovskite compound, Ba4CuNb3O12

Published online by Cambridge University Press:  05 March 2012

N. Kumada*
Affiliation:
Department of Research Interdisciplinary, Graduate School of Medicine and Engineering, University of Yamanashi, Miyamae-cho 7-32, Kofu, Yamanashi 400-8511, Japan
W. Zhang
Affiliation:
Department of Research Interdisciplinary, Graduate School of Medicine and Engineering, University of Yamanashi, Miyamae-cho 7-32, Kofu, Yamanashi 400-8511, Japan
Q. Dong
Affiliation:
Department of Research Interdisciplinary, Graduate School of Medicine and Engineering, University of Yamanashi, Miyamae-cho 7-32, Kofu, Yamanashi 400-8511, Japan
T. Mochizuki
Affiliation:
Department of Research Interdisciplinary, Graduate School of Medicine and Engineering, University of Yamanashi, Miyamae-cho 7-32, Kofu, Yamanashi 400-8511, Japan
Y. Yonesaki
Affiliation:
Department of Research Interdisciplinary, Graduate School of Medicine and Engineering, University of Yamanashi, Miyamae-cho 7-32, Kofu, Yamanashi 400-8511, Japan
T. Takei
Affiliation:
Department of Research Interdisciplinary, Graduate School of Medicine and Engineering, University of Yamanashi, Miyamae-cho 7-32, Kofu, Yamanashi 400-8511, Japan
N. Kinomura
Affiliation:
Department of Research Interdisciplinary, Graduate School of Medicine and Engineering, University of Yamanashi, Miyamae-cho 7-32, Kofu, Yamanashi 400-8511, Japan
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

A new barium copper niobate, Ba4CuNb3O12, was successfully prepared by high-temperature solid-state reaction in an inert atmosphere. Rietveld-refinement analysis of the XRD data of the compound showed that it has the 8H-type hexagonal perovskite structure with space group P63/mmc (#194), a = 5.830(1) Å, c = 19.123(1) Å, and chemical composition of Ba4Cu1.84Nb2.16O12-δ.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adkin, J. J. and Hayward, M. A. (2007). “BaMnO3-x revisited: A structural and magnetic study,” Chem. Mater. 19, 755762. 10.1021/cm062055rCrossRefGoogle Scholar
Battle, P. D., Kim, S.-H., and Powell, A. V. (1992). “The crystal structure and electronic properties of Ba4Ru3MO12 (M = Li, Na, Mg, Zn),” J. Solid State Chem. 101, 161172. 10.1016/0022-4596(92)90212-ECrossRefGoogle Scholar
Choy, J.-H., Hong, S.-T., Park, J.-H., and Kim, D.-K. (1993). “Crystal structure and the role of covalency in eight-layered hexagonal Ba2CrTaO6,” Jpn. J. Appl. Phys. 32, 46284634. 10.1143/JJAP.32.4628CrossRefGoogle Scholar
Choy, J.-H., Hong, S.-T., and Choi, K.-S. (1996). “Crystal structure, magnetism and phase transformation in perovskites A2CrNbO6 (A = Ca, Sr, Ba),” J. Chem. Soc., Faraday Trans. 92, 10511059. 10.1039/ft9969201051CrossRefGoogle Scholar
de Paoli, J., Alonso, M. J. A., and Carbonio, R. E. (2006). “Synthesis and structure refinement of layered perovskites Ba5-xLaxNb4-xTixO15 (x = 0, 12, 3 and 4) solid solutions,” J. Phy. Chem. Solids 67, 15581566. 10.1016/j.jpcs.2006.01.120CrossRefGoogle Scholar
Drew, M. G. B. R. and Hobson, J. (1993). “Synthesis, single-crystal structure and magnetic properties of orthorhombic CuNb2O6,” J Mater. Chem. 3, 889892. 10.1039/jm9930300889CrossRefGoogle Scholar
Fesenko, E. G., Smotrakov, W. T., Eremkin, V. G., and Shilkina, L. A. (1992). “Preparation of Ternary copper-containing oxides with perovskite structure,” Neorg. Mater. 28, 21532155.Google Scholar
Fletz, A. and Langbein, H. (1976). “Über die Verbindungen Ba6NbIV2NbV8O30 und Ba9CuIINbV14O45 und Untersuchungen zur Mischkristallbildung mit Ba6Ti IV4Nb V6O30,” Z. Anorg. Allg. Chem. 425, 4756. 10.1002/zaac.v425:1CrossRefGoogle Scholar
Izumi, F. and Ikeda, T. (2000). “A Rietveld-analysis program rietan-98 and its applications to zeolite,” Mater. Sci. Forum 321–324, 198203. 10.4028/www.scientific.net/MSF.321-324.198CrossRefGoogle Scholar
Jendrek, E. F., Potoff, A. D., and Katz, L. (1974). “A single-crystal study of eight-layer barium niobium lithium oxide, Ba4Nb3LiO12,” J. Solid State Chem. 9, 375379. 10.1016/0022-4596(74)90097-8CrossRefGoogle Scholar
Kapyshev, A. G., Ivanova, V. V., and Venevzev, Y. N. (1966). “New perovskite,” Dokl. Akad. Nauk SSSR 167, 564565.Google Scholar
Langbein, H., Bremer, M., and Krabbes, I. (1997). “CuX2O6 and Ba3CuX2O9 (X = Nb, Ta): Influence of the preparation conditions on phase formation and phase composition,” Solid State Ionics 102–103, 579584. 10.1016/S0167-2738(97)00382-2CrossRefGoogle Scholar
Marinder, B. O., Werner, P. E., Wahlstroem, E., and Malmros, G. (1980). “Investigations on a new copper niobium oxide of LiNb3O8 type using chemical analysis and X-Ray powder diffraction profile analysis,” Acta Chem. Scand. 34, 5156. 10.3891/acta.chem.scand.34a-0051CrossRefGoogle Scholar
Marinder, B. O. and Wahlstroem, E. (1984). “CuNbO3 a structure with stepped NbO3 Layers,” Chem. Scr. 23, 157160.Google Scholar
Momma, K. and Izumi, F. (2008). “VETA: A three-dimensional visualization system for electronic and structural analysis,” J. Appl. Crystallogr. 41, 653658. 10.1107/S0021889808012016CrossRefGoogle Scholar
Negas, T., Roth, R. S., Parker, S., and Brower, W. S. (1973). “Crystal chemistry of lithium in octahedrally coordinated structures. I. Synthesis of Ba8(Me6Li2)O24 (Me = Nb or Ta) and Ba10(W6Li4)O30. II. The tetragonal bronze phase in the system BaO - Nb2O5 - Li2O,” J. Solid State Chem. 8, 113. 10.1016/0022-4596(73)90013-3CrossRefGoogle Scholar
Ono, A. (1992). “Preparation of new perovskite-type oxides Ba2.5Nb1.5CuO9 and Sr3Ta2CuO9,” J. Mater. Sci. Lett. 11, 114115. 10.1007/BF00724616CrossRefGoogle Scholar
Potoff, A. D., Chamberland, B. L., and Katz, L. (1973). “A single crystal study of eight-layer barium manganese oxide, BaMnO3,” J. Solid State Chem. 8, 234237. 10.1016/0022-4596(73)90090-XCrossRefGoogle Scholar
Priya, S., Ando, A., and Sakabe, Y. (2003). “Nonlead perovskite materials: Ba(Li1/4Nb3/4)O3 and Ba(Cu1/3Nb2/3)O3,” J. Appl. Phys. 94, 11711177. 10.1063/1.1585121CrossRefGoogle Scholar
Rao, K. S., Rao, P. S. J., and Rao, K. R. (1993). “Dielectric and resistivity properties of lanthanum doped Ba(Cu1/3Ta2/3)O3 and Ba(Cu1/3Nb2/3)O3,” Indian J. Pure Appl. Phys. 31, 4347.Google Scholar
Renard, C., Daviero-Minaud, S., Huve, M., and Abraham, F. (1999). “Sr4Ru3.05O12: A new member of the hexagonal perovskite family,” J. Solid State Chem. 144, 125135. 10.1006/jssc.1999.8132CrossRefGoogle Scholar
Restori, R. and Schwarzenbach, D. (1986). “Charge density in Cuprite, Cu2O,” Acta Crystallogr. B42, 201208.CrossRefGoogle Scholar
Shannon, R. D. (1976). “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr., Sect. A: Crsyt Phys., Diffr., Theor. Gen. Crystallogr. 32, 751767. 10.1107/S0567739476001551CrossRefGoogle Scholar
Teneze, N., Boullay, P., Petricek, V., Trolliard, G., and Mercurio, D. (2002). “Structural study of the cation ordering in the ternary oxide Ba8Ti3Nb4O24,” Solid State Sci. 4, 11291136. 10.1016/S1293-2558(02)01371-7CrossRefGoogle Scholar
Zhang, W., Kumada, N., Yonesaki, Y., Takei, T., Kinomura, N., Hayashi, T., Azuma, M., and Takano, M. (2006). “Ferroelectric perovskite-type barium copper niobate: BaCu1/3Nb2/3O3,” J. Solid State Chem. 179, 40524055. 10.1016/j.jssc.2006.08.008CrossRefGoogle Scholar