Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T05:48:19.675Z Has data issue: false hasContentIssue false

Crystal structure and luminescence properties of a novel promising phosphor Ba3ScB9O18

Published online by Cambridge University Press:  01 March 2012

Gemei Cai
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100080, P. R. China
Ming He
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100080, P. R. China
X. L. Chen
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100080, P. R. China
W. Y. Wang
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100080, P. R. China
Y. F. Lou
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100080, P. R. China and Center of Condensed Matter and Materials Physics, School of Sciences, Beihang University, Beijing 100083, P. R. China
H. H. Chen
Affiliation:
Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
J. T. Zhao
Affiliation:
Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China

Abstract

A novel borate compound Ba3ScB9O18 has been synthesized by solid-state reaction and its structure has been determined and refined from powder X-ray diffraction data. This compound crystallizes in a hexagonal cell (space group P63/m) with lattice parameters a=7.1360(4) Å and c=16.5420(9) Å, and each unit cell contains two formulas. Its crystal structure is made up of planar B3O6 groups parallel to each other along the [001] direction, regular ScO6 octahedra, irregular BaO6 hexagons, and BaO9 polyhedra to form an analogue structure of Ba3YB9O18. DTA and TGA curves for Ba3ScB9O18 show that it is a chemically stable and congruent melting compound. Luminescence properties for Ba3ScB9O18 were investigated using fluorescence spectroscopy and X-ray excited luminescence measurements. Its emission spectrum upon UV excitation (330 nm) has exhibited a prominent blue-green emission band at about 490 nm, and its XEL spectra show an intense emission band in the range of 360 to 500 nm with peak center at 400 nm. The light yield of Ba3ScB9O18 powders is about 23% as large as that of BGO powders under the same measurement conditions. There seems to be a certain relationship between the scintillation properties and the structural features of Ba3ScB9O18.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aka, G., Kahn-Harari, A., Mougel, F., Vivien, D., Salin, F., Coquelin, P., Colin, P., Pelenc, D., and Damelet, J. P. (1997). “Linear- and Nonlinear-optical Properties of a New Gadolinium Calcium Oxoborate Crystal, Ca4GdO(BO3)3,” J. Opt. Soc. Am. BJOBPDE 14, 22382247.CrossRefGoogle Scholar
Boultif, A. and Louër, D. (2004). “Powder Pattern Indexing with the Dichotomy Method,” J. Appl. Crystallogr.JACGAR10.1107/S0021889804014876 37, 724731.CrossRefGoogle Scholar
Brown, I. D. and Altermatt, D. (1985). “Bond-Valence Parameters Obtained from a Systematic Analysis of the Inorganic Crystal Structure Database,” Acta Crystallogr.ASBSDK10.1107/S0108768185002063 41, 244247.CrossRefGoogle Scholar
Chen, C. T., Wu, B. C., Jiang, A., and You, G. (1985). “New-Type Ultraviolet SHG Crystal-β-BaB2O4,” Sci. Sin., Ser. B (Engl. Ed.)SSBSEF 28, 235243.Google Scholar
Chen, C. T., Wu, Y., Jiang, A., Wu, B. C., You, G., Li, R., and Lin, S. (1989). “New Nonlinear-Optical Crystal: LiB3O5,” J. Opt. Soc. Am. BJOBPDE 6, 616621.CrossRefGoogle Scholar
Duan, C. J., Li, W. F., Chen, H. H., Yang, X. X., Zhao, J. T., Fu, Y. B., Zhang, G. B., Qi, Z. M., and Shi, Z. S. (2005a). “Luminescence Properties of Ca4GdO(BO3)3:R E (R E=Eu3+,Tb3+) Under VUV Excitation,” Chin. Phys. Lett.CPLEEU10.1088/0256-307X/22/3/053 22, 711714.Google Scholar
Duan, C. J., Yuan, J. L., and Zhao, J. T. (2005b). “Luminescence Properties of Efficient X-ray Phosphors of YBa3B9O18, LuBa3(BO3)3, α-YBa3(BO3)3 and LuBO3,” J. Solid State Chem.JSSCBI10.1016/j.jssc.2005.09.026 178, 36983702.CrossRefGoogle Scholar
He, M., Kienle, L., Simon, A., Chen, X. L., and Duppel, V. (2004). “Re-Examination of the Crystal Structure of Na2Al2B2O7: Stacking Faults and Twinning,” J. Solid State Chem.JSSCBI10.1016/j.jssc.2004.06.008 177, 32123218.CrossRefGoogle Scholar
He, M., Chen, X. L., Sun, Y. P., Liu, J., Zhao, J. T., and Duan, C. J. (2007). “YBa3B9O18: A Promising Scintillation Crystal,” Cryst. Growth Des.CGDEFU 7, 199201.CrossRefGoogle Scholar
Huang, Y. L., Feng, Q., Yang, Y., and Seo, H. J. (2005). “A Study of Luminescence Properties in the Boron-Doped Lead Tungstate,” Phys. Lett. APYLAAG10.1016/j.physleta.2004.12.093 336, 490497.CrossRefGoogle Scholar
Kurtz, S. K. and Perry, T. T. (1968). “A Powder Technique for the Evaluation of Nonlinear Optical Materials,” J. Appl. Phys.JAPIAU10.1063/1.1656857 39, 37983813.CrossRefGoogle Scholar
Li, X. Z., Wang, C., Chen, X. L., Li, H., Jia, L. S., Wu, L., Du, Y. X., and Xu, Y. P. (2004). “Syntheses, Thermal Stability, and Structure Determination of the Novel Isostructural RBa3B9O18 (R=Y,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb),” Inorg. Chem.INOCAJ10.1021/ic049710m 43, 85558560.CrossRefGoogle Scholar
Nakamoto, K. (1963). Infrared Spectra of Inorganic and Coordination Compounds (Wiley, New York).Google Scholar
Rietveld, H. M. (1969). “A Profile Refinement Method for Nuclear and Magnetic Structures,” J. Appl. Crystallogr.JACGAR10.1107/S0021889869006558 2, 6571.CrossRefGoogle Scholar
Rodríguez-Carvajal, J. (1997). “Fullprof, Program for Rietveld Refinement,” Laboratories Léon Brillouin (CEA-CNRS) Saclay, France.Google Scholar
Thompson, P. D., Huang, J. F., Smith, R. W., and Keszler, D. A. (1991). “The Mixed Orthoborate Pyroborates Sr2Sc2B4O11 and Ba2Sc2B4O11: Pyroborate Geometry,” J. Solid State Chem.JSSCBI10.1016/0022-4596(91)90382-R 95, 126135.CrossRefGoogle Scholar
Wu, Y., Sasaki, T., Nakai, S., Yokotani, A., Tang, H., and Chen, C. (1993). “CsB3O5: A New Nonlinear Optical Crystal,” Appl. Phys. Lett.APPLAB10.1063/1.109262 62, 26142615.CrossRefGoogle Scholar
Wu, L., Chen, X. L., Li, H., He, M., Xu, Y. P., and Li, X. Z. (2005). “Structure Determination and Relative Properties of Novel Cubic Borates M M 4′(BO3)3 (M=Li, M′=Sr; M=Na, M′=Sr,Ba),” Inorg. Chem.INOCAJ10.1021/ic050299s 44, 64096414.CrossRefGoogle Scholar
Yang, Z., Chen, X. L., Liang, J. K., Lan, Y. C., and Xu, T. (2001). “Phase Relations in the MgO–Ga2O3–B2O3 System and the Crystal Structure of MgGaBO4,” J. Alloys Compd.JALCEU10.1016/S0925-8388(01)00871-4 319, 247252.CrossRefGoogle Scholar
Zhang, Y., Chen, X. L., Liang, J. K., and Xu, T. (2003a). “Phase Relations of the System Li2O–Gd2O3–B2O3 and the Structure of a New Ternary Compound,” J. Alloys Compd.JALCEU10.1016/S0925-8388(02)00843-5 348, 314318.CrossRefGoogle Scholar
Zhang, S. Y., Wu, L., Chen, X. L., He, M., Cao, Y. G., Song, Y. T., and Ni, D. Q. (2003b). “Phase Relations in the BaO–B2O3–TiO2 System and the Crystal Structure of BaTi(BO3)2,” Mater. Res. Bull.MRBUAC10.1016/S0025-5408(03)00073-4 38, 783788.CrossRefGoogle Scholar