Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T17:08:49.588Z Has data issue: false hasContentIssue false

Crystal Data for Nickel Cimetidine* Chloride: Ni (CM)2 CL2·2H2O

Published online by Cambridge University Press:  10 January 2013

J.M. Amigó
Affiliation:
Unidad de Cristalografia y Mineralogía, Departamento de Geologia, Universitat de València, 46100-Burjassot (València), Spain
L.E. Ochando
Affiliation:
Unidad de Cristalografia y Mineralogía, Departamento de Geologia, Universitat de València, 46100-Burjassot (València), Spain
M.M. Reventós
Affiliation:
Unidad de Cristalografia y Mineralogía, Departamento de Geologia, Universitat de València, 46100-Burjassot (València), Spain
A. Sancho
Affiliation:
Departamento de Química Inorgánica, Facultad de Farmacia, Universitat de València, 46010-València, Spain
L. Soto-Tuero
Affiliation:
Departamento de Química Inorgánica, Facultad de Farmacia, Universitat de València, 46010-València, Spain

Abstract

Nickel Cimetidine Chloride, Ni(C10H16SN6)2Cl2·2H2O has been investigated by means of X-ray powder diffraction. Unit cell dimensions were determined by indexing programs, from diffractometer data obtained with copper radiation. A primitive monoclinic cell was found: a = 11.836(3)Å, b = 13.322(5)Å, c = 10.487(2)Å, β = 113.08 (2)°, Z = 2, Dx = 1.462 g/cm3, M.W. = 670.32. These data are consistent with values reported in the literature for other cimetidine complexes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Appleman, D.E. & Evans, H.T. Jr., (1973). Report PB 216188, U.S. Dept. of Commerce, National Technical Information Service, 5285 Port Royal Rd., Springfield, VA 22151.Google Scholar
Garvey, R.G. (1986). Pow. Diff. 1, 114.Google Scholar
Kohlbeck, F. & Hörl, E.M. (1976). J. Appl. Cryslallogr. 9, 28.CrossRefGoogle Scholar
Louër, D. & Louër, M. (1972). J. Appl. Cryslallogr. 5, 271.CrossRefGoogle Scholar
Louër, D. & Vargas, R. (1982). J. Appl. Crystallogr. 15, 542.CrossRefGoogle Scholar
Louër, M., Plévert, J. & Louër, D. (1988). Acta Cryslallogr. B44, 463.CrossRefGoogle Scholar
Rachinger, W.A. (1948). J. Sci. Instrum. 25, 254.CrossRefGoogle Scholar
Sancho, A., Soto-Tuero, L., Cantarero, A., Arriortua, M.I. & Amigó, J.M. (1985). Z. Kristallogr. 173, 155.CrossRefGoogle Scholar
Sancho, A., Soto-Tuero, L. & Borrás, J. (1985). Trans. Met. Chem. 10, 214.CrossRefGoogle Scholar
Sancho, A., Borrás, J. & Soto-Tuero, L. (1986). Termochim. Acta 104, 31.CrossRefGoogle Scholar
Shirley, R. (1980). Accuracy in Powder Diffraction, (1980) NBS Spec. Publ. (U.S.) 567, 361382. Washington, D.C.: U.S. Government Printing Office.Google Scholar
Smith, G.S. & Snyder, R.L. (1979). J. Appl. Crystallogr. 12, 60.CrossRefGoogle Scholar
Visser, J.W. (1969). J. Appl. Crystallogr. 2, 89.CrossRefGoogle Scholar
Wolff, P.M. de (1968). J. Appl. Cryslallogr. 1, 108.CrossRefGoogle Scholar