Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-09T14:25:59.461Z Has data issue: false hasContentIssue false

Brochantite-2M2 from Pierre Plate Mine, Vizille

Published online by Cambridge University Press:  29 February 2012

Wilson A. Crichton
Affiliation:
European Synchrotron Radiation Facility, 6 rue Jules Horowitz, 38043 Grenoble Cedex, France
Harald Müller
Affiliation:
European Synchrotron Radiation Facility, 6 rue Jules Horowitz, 38043 Grenoble Cedex, France

Abstract

Evidence for the recently described 2M2 polytype of brochantite from X-ray powder diffraction investigation of secondary alteration products of ore material from the Pierre Plate Mine, Vizille, Isère, France is presented. This report is the first to describe the 2M2 polytype from locations outside of Italy and through the use of powder XRD methods. In the procedure used herein, developed in a study by Merlino et al. [Eur. J. Mineral 15, 267–275 (2003)], we have used family reflections, common to both main types of brochantite, as the source of approximate cell parameters from which we obtain positions of characteristic reflections to demonstrate the unique choice of polytype, before final refinement stage. This method demonstrates that the determination of polytype is possible from powder data, for samples typical of both geological and urban environments. Least-squares refined cell parameters for the 2M2 polytype from Pierre Plate are a=12.7409(8) Å, b=9.8371(6) Å, c=6.0109(3) Å, and a=90.135(9)°, constrained in space group P21/n11.

Type
NEW DIFFRACTION DATA
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bonnot, M. and Bonnot, M. (1981). Minéralogie Buissonière Autour de Vizille (Isère) (City of Vizille, Vizille, France).Google Scholar
Chen, Z. Y., Zakipour, S., Persson, D., and Leygraf, C. (2005). “Combined effects of gaseous pollutants and sodium chloride particles on the atmospheric corrosion of copper,” Corrosion (Houston) CORRAK 61, 10221034.CrossRefGoogle Scholar
Cocco, G. and Mazzi, F. (1959). “La struttura della brochantite,” Periodico di Mineralogia 28, 121149.Google Scholar
De Bodinet, G. and Desfarge, S. (2003). “Cueillette de pétales de sidérite parsemés de bournonite,” Le Règne Minéral 53, 4043.Google Scholar
Duarte, J. (1997). “La dolomite de Saint-Pierre-de-Mésage (Isère),” Le Règne Minéral 14, 513.Google Scholar
Duarte, J. (2000). “La mine de Pierre Rousse, Commune de Vizille, Isère,” Le Règne Minéral 35, 523.Google Scholar
FitzGerald, K. P., Nairn, J., Skennerton, G., and Atrens, A. (2006). “Atmospheric corrosion of copper and the colour, structure and composition of natural patinas on copper,” Corros. Sci. CRRSAA 48, 24802509.Google Scholar
Hammersley, A. P., Svensson, S. O., Thompson, A., Graafsma, H., Kvick, Å, and Moy, J. P. (1995). “Calibration and correction of distortions in two-dimensional detector systems,” Rev. Sci. Instrum. RSINAK 10.1063/1.1146453 66, 23102319.CrossRefGoogle Scholar
Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N., and Hausermann, D. (1996). “Two-dimensional detector software: From real detector to idealised image or two-theta scan,” High Press. Res. HPRSEL 10.1080/08957959608201408 14, 235248.CrossRefGoogle Scholar
Helliwell, M. and Smith, J. V. (1997). “Brochantite,” Acta Crystallogr., Sect. C: Cryst. Struct. Commun. ACSCEE 53, 13691371.CrossRefGoogle Scholar
Holland, T. J. B. and Redfern, S. A. T. (1997). “Unit cell refinement from powder diffraction data; the use of regression diagnostics,” Miner. Mag. MNLMBB 10.1180/minmag.1997.061.404.07 61, 6577.CrossRefGoogle Scholar
Kraus, W. and Nolze, G. (1996). “POWDER CELL—A program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns,” J. Am. Ceram. Soc. JACTAW 29, 301303.Google Scholar
Lacroix, A. (1926). Minéralogie de la France et de ses Anciens Territoires D’Outre-Mer (Librairie Scientifique et Technique Albert Blanchard, Paris), Vol. 4.Google Scholar
Larson, A. C. and Von Dreele, R. B. (2000). General Structure Analysis System (GSAS) Report LAUR 86–748 Los Alamos, New Mexico, Los Alamos National Laboratory.Google Scholar
Lauro, C. (1939). “Brochantite della miniera di ‘Sa Duchessa’ (Sardegna),” Periodico di Mineralogia 10, 327341.Google Scholar
Lauro, C. (1941). “Sulle costanti reticolari della brochantite,” Periodico di Mineralogia 12, 419427.Google Scholar
Legros, A. and Legros, M. (1975). Histoire des Anciennes Mines et Gites de L'Oisans (Centres Miniers de l'Isère, Cordes sur Ciel).Google Scholar
Mattsson, E. and Holm, R. (1982). “Atmospheric corrosion of copper and its alloys,” in Atmospheric Corrosion, edited by Ailor, W. H. (Wiley, New York), pp. 365381.Google Scholar
Merlino, S. (1997). “OD approach in minerals: examples and applications,” in EMU Notes in Mineralogy, Volume 1: Modular Aspects of Minerals (Eötvös University Press, Budapest), pp. 2954.CrossRefGoogle Scholar
Merlino, S., Perchiazzi, N., and Franco, D. (2003). “Brochantite, Cu4SO4(OH)6: OD character, polytypism, and crystal structures,” Eur. J. Mineral. EJMIER 15, 267275.Google Scholar
Palache, C. (1939). “Brochantite,” Am. Mineral. AMMIAY 24, 463481.Google Scholar
Ramos-Arroyo, Y. R., Hansen, A. M., and Siebe-Grabach, C. (2006). “Simulation of geochemical processes in mine tailings,” Ingeniería Hidrálica en México 21, 87100.Google Scholar
Vilminot, S., Richard-Plouet, M., André, G., Swierczynski, D., Bourée-Vigneron, F., Marino, E., and Guillot, M. (2002). “Synthesis, structure and magnetic properties of copper hydroxysulfates,” Cryst. Eng. CRYEF8 5, 177186.CrossRefGoogle Scholar
Vilminot, S., Richard-Plouet, M., André, G., Swierczynski, D., Bourée-Vigneron, F., and Kurmoo, M. (2006). “Nuclear and magnetic structures and magnetic properties of synthetic brochantite, Cu4(OH)6SO4,” Dalton Trans. DTARAF 2006, 14551462.CrossRefGoogle Scholar
Watanabe, M., Hokazono, A., Handa, T., Ichino, T., and Kuwaki, N. (2006). “Corrosion of copper and silver plates by volcanic gases,” Corros. Sci. CRRSAA 48, 37593766.Google Scholar
Watanabe, M., Toyoda, E., Handa, T., Ichino, T., Kuwaki, N., Higashi, Y., and Tanaka, T. (2007). “Evolution of patinas on copper exposed in a suburban area,” Corros. Sci. CRRSAA 49, 766780.Google Scholar
Woods, T. L. and Garrels, R. M. (1986). “Use of oxidised copper minerals as environmental indicators,” Appl. Geochem. APPGEY 1, 181187.CrossRefGoogle Scholar