Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-23T05:41:42.481Z Has data issue: false hasContentIssue false

Applications of Total Pattern Fitting to a Study of Crystallite Size and Strain in Zinc Oxide Powder

Published online by Cambridge University Press:  10 January 2013

J. I. Langford
Affiliation:
Department of Physics, University of Birmingham B15 2TT, England.
D. Louër
Affiliation:
Laboratoire de Cristallochimie (U.A. 254 au C.N.R.S.), Université de Rennes I, Avenue du Général Leclerc, 35042 Rennes Cédex, France.
E. J. Sonneveld
Affiliation:
Technisch Physische Dienst TNO-TH, P.O. Box 155, Delft, The Netherlands.
J. W. Visser
Affiliation:
Technisch Physische Dienst TNO-TH, P.O. Box 155, Delft, The Netherlands.

Abstract

A novel approach to the determination of crystallite size and lattice strain by means of Total Pattern Analysis is described. Parameters to define the position, magnitude, breadth and shape of individual peaks are obtained by an adaptation of the pattern fitting program of Sonneveld and Visser (J. Appl. Cryst. 8, 1–7, 1975). A rapid assessment of the nature of the specimen broadening is given by a Williamson-Hall Plot. This leads to a more detailed study of line breadths by, for example, Voigt analysis applied to several orders of reflections or to single lines. Preliminary results are given for the application of this procedure to ‘size only’ and ‘size-strain’ samples of ZnO.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahtee, M., Unonius, L., Nurmela, M. & Suortti, P. (1984). J. Appl. Cryst. 17, 352357.CrossRefGoogle Scholar
Auffrédic, J. P. & Louër, D. (1985). Reactivity of Solids, 10th I.S.R.S., 28B, 657658.Google Scholar
Caglioti, G., Paoletti, A. & Ricci, F. P. (1958). Nucl. Instrum. 3, 223228.CrossRefGoogle Scholar
De Keijser, Th. H., Langford, J. I., Mittemeijer, E. J. & Vogels, A. B. P. (1982). J. Appl. Cryst. 15, 308314.CrossRefGoogle Scholar
De Keijser, Th. H., Mittemeijer, E. J. & Rozendaal, H. C. F. (1983). J. Appl. Cryst. 16, 309316.CrossRefGoogle Scholar
Delhez, R. & Mittemeijer, E. J. (1975). J. Appl. Cryst. 8, 609611.CrossRefGoogle Scholar
Gangulee, A. (1970). J. Appl. Cryst. 3, 272277.CrossRefGoogle Scholar
Guinier, A. (1963). X-Ray Diffraction, San Francisco: Freeman.Google Scholar
Hall, M. M. Jr., Veeraraghavan, V. G., Rubin, H. & Winchell, P. G. (1977). J. Appl. Cryst. 10, 6668.CrossRefGoogle Scholar
Hayakawa, M. & Oka, M. (1981). J. Appl. Cryst. 14, 145148.CrossRefGoogle Scholar
Langford, J. I. (1978). J. Appl. Cryst. 11, 1014.CrossRefGoogle Scholar
Langford, J. I. (1980). Accuracy in Powder Diffraction, Natl. Bur. Stand. Spec. Pub. No. 567, edited by Block, S. & Hubbard, C. R., pp. 255269. Washington, D.C.: National Bureau of Standards.Google Scholar
Langford, J. I., & Louër, D. (1982). J. Appl. Cryst. 15, 2026.CrossRefGoogle Scholar
Langford, J. I.Louër, D. & Hewat, A. (1981). Institui Laue-Langevin, Annex to Annual Report, 5–25–143, p. 157.Google Scholar
Louër, D. (1986). Chem. Scripta, 26, in press.Google Scholar
Louër, D., Auffrédic, J. P.Langford, J. I., Ciosmak, D. & Niepce, J. C. (1983). J. Appl. Cryst. 16, 183191.CrossRefGoogle Scholar
Louër, D., Vargas, R. & Aufrédic, J. P. (1984). J. Amer. Ceram. Soc. 67, 136141.CrossRefGoogle Scholar
Mallory, C. L. & Snyder, R. (1978). Adv. X-ray Anal. 22, 121131.Google Scholar
Malmros, G. & Thomas, J. O. (1977). J. Appl. Cryst. 10, 711.CrossRefGoogle Scholar
Naidu, S. V. N. & Houska, C. R. (1982). J. Appl. Cryst. 15, 190198.CrossRefGoogle Scholar
Nelder, J. A. & Mead, R. (1965). Comput. J. 8, 308313.CrossRefGoogle Scholar
Niepce, J. C. & Benabad-Sidky, A. (1986). Chem. Scripta, 26, in press.Google Scholar
Parrish, W., Huang, T. C. & Ayers, G. L. (1976). Trans. Am. Cryst. Assoc. 12, 5573.Google Scholar
Platbrood, G. (1983). J. Appl. Cryst. 16, 2427.CrossRefGoogle Scholar
Prince, E. (1983). J. Appl. Cryst. 16, 508511.CrossRefGoogle Scholar
Rachinger, W. A. (1948). J. Sci. Instrum. 25, 254255.CrossRefGoogle Scholar
Rietveld, H. M. (1969). J. Appl. Cryst. 2, 6571.CrossRefGoogle Scholar
Savitsky, A. & Golay, J. E. (1964). Anal. Chem. 36, 16271639.CrossRefGoogle Scholar
Sonneveld, E. J. & Visser, J. W. (1975). J. Appl. Cryst. 8, 17.CrossRefGoogle Scholar
Taupin, D. (1973). J. Appl. Cryst. 6, 266273.CrossRefGoogle Scholar
Vargas, R., Louër, D. & Langford, J. I. (1983). J. Appl. Cryst. 16, 512518.CrossRefGoogle Scholar
Wertheim, G. K., Butler, M. A., West, K. W. & Buchanan, D. N. E. (1974). Rev. Sci. Instrum. 45, 13691371.CrossRefGoogle Scholar
Wiles, D. B. & Young, R. A. (1981). J. Appl. Cryst. 14, 149757.CrossRefGoogle Scholar
Williamson, G. K. & Hall, W. H. (1953). Acta Metallurgica 1, 2231.CrossRefGoogle Scholar
Young, R. A. & Wiles, D. B. (1982). J. Appl. Cryst. 15, 430438.CrossRefGoogle Scholar
Will, G., Parrish, W. & Huang, T. C. (1983). J. Appl. Cryst. 16, 611622.CrossRefGoogle Scholar