Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-23T05:36:25.889Z Has data issue: false hasContentIssue false

Analysis of X-Ray Powder Diffraction Patterns of Perovskite-Like PrNiO3

Published online by Cambridge University Press:  10 January 2013

T. C. Huang
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, California 95120-6099, U.S.A.
W. Parrish
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, California 95120-6099, U.S.A.
J. B. Torrance
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, California 95120-6099, U.S.A.
P. Lacorre
Affiliation:
Laboratoire des Fluorures, U.A. CNRS 449, Université du Maine, Route de Laval, 72017 Le Mans, France

Abstract

X-ray powder diffraction patterns of orthorhombic- and rhombohedral-distorted perovskite PrNiO3 obtained at room temperature, 200°, 400°, 500°, and 600°C were analyzed and evaluated. An examination of the diffraction profiles shows essentially no line broadening indicating that the PrNiO3 powders synthesized by solid state reaction are well-crystallized and probably strain-free. The reliability and accuracy of the patterns were evaluated, and the figures-of-merit were in triple digits for the 500° and 600°C patterns of the rhombohedral phase and double digits for the more complex orthorhombic diffraction patterns recorded at room-temperature, 200°, and 400°C. Values of lattice parameters refined from the observed diffraction peak positions agree with those obtained from the Rietveld whole-pattern fitting analysis to within 1–2 × 10−4.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blanchard, F. N. (1989). Pow. Diff. 4, 227.CrossRefGoogle Scholar
Demazeau, G., Marbeuf, A., Pouchard, M., & Hagenmuller, P. (1971) J. Solid State Chem. 3, 582.CrossRefGoogle Scholar
Geller, S. (1957). Acta Crystallogr. 10, 243.CrossRefGoogle Scholar
Geller, S. & Bala, V. B. (1956). Acta Crystallogr. 9, 1019.CrossRefGoogle Scholar
Geller, S. & Wood, E. A. (1956). Acta Crystallogr. 9, 563.CrossRefGoogle Scholar
Huang, T. C. & Parrish, W. (1984). Adv. X-Ray Anal. 27, 45.Google Scholar
Huang, T. C., Parrish, W., Toraya, H., Lacorre, P., & Torrance, J. B. (1990a). Mat. Res. Bull. 25, 1091.CrossRefGoogle Scholar
Huang, T. C., Lacorre, P., Torrance, J. B., Nazzal, A. I., Wang, R. I., Lankford, A., & Parrish, W. (1990b). In preparation.Google Scholar
Lacorre, P., Torrance, J. B., Pannetier, J.Nazzal, A. I., Wang, P. W., & Huang, T. C. (1990). Accepted for publication in J. Solid. State. Chem.Google Scholar
Marezio, M., Dernier, P. D., & Remeika, J. P. (1972). J. Solid State Chem. 4, 11.CrossRefGoogle Scholar
Marezio, M., Remeika, J. P., & Dernier, P. D. (1970). Acta Crystallogr. B26, 2008.Google Scholar
McCarthy, G. J. (1978). “The Rare Earth in Modern Science and Technology”, McCarthy, G. J. and Rhyne, J. J. (Eds.), pp. 189199, Plenum, New York.CrossRefGoogle Scholar
Mighell, A. D., Hubbard, C. R., & Stalick, J. K. (1981). NBS Technical Note 1141, NBS, Gaithersburg, MD 20899.Google Scholar
Parrish, W., Erickson, C., & Masciocchi, N. (1990). In preparation.Google Scholar
Parrish, W. & Huang, T. C. (1980). “Proceeding of Symposium on Accuracy in Powder Diffraction”, Block, S. and Hubbard, C. R. (Eds.), pp. 95110, NBS, Gaithersburg, MD 20899.Google Scholar
Smith, G. S. & Snyder, R. L. (1979). J. Appl. Crystallogr. 12, 60.CrossRefGoogle Scholar
Wolff, P. M. de (1968). J. Appl. Crystallogr. 1, 108.CrossRefGoogle Scholar
Wold, A. A., Post, B., & Banks, E. (1957). J. Amer. Chem. Soc. 79, 4911.CrossRefGoogle Scholar
Yakel, H. L. (1955). Acta Crystallogr. 8, 394.CrossRefGoogle Scholar