Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-17T18:12:49.024Z Has data issue: false hasContentIssue false

An investigation into the temperature phase transitions of synthesized lithium titanate materials doped with Al, Co, Ni and Mg by in situ powder X-ray diffraction

Published online by Cambridge University Press:  25 August 2020

X. van Niekerk*
Affiliation:
Department of Chemistry and uYilo, e-Mobility Technology Innovation Programme, Nelson Mandela University, P.O. Box 77000, Port Elizabeth6001, South Africa
E. E. Ferg
Affiliation:
Department of Chemistry and uYilo, e-Mobility Technology Innovation Programme, Nelson Mandela University, P.O. Box 77000, Port Elizabeth6001, South Africa
C. Gelant
Affiliation:
Department of Chemistry and uYilo, e-Mobility Technology Innovation Programme, Nelson Mandela University, P.O. Box 77000, Port Elizabeth6001, South Africa
D. G. Billing
Affiliation:
School of Chemistry and DST/NRF Centre of Excellence in Strong Materials, University of Witwatersrand, Private Bag 3, Johannesburg2000, South Africa
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

Li4Ti5O12 (LTO) and its doped analogues Li4Ti4.95M0.05O12 (M = Al3+, Co3+, Ni2+, and Mg2+) were synthesized and characterized using in situ PXRD to monitor the phase transitions during the sol–gel synthesis of the spinel material. These results are complimented by thermogravimetric analysis, which illustrates the decomposition of the materials synthesized, where the final LTO products are seen to form at approximately 550 °C. The material has an amorphous structure from room temperature, coupled with a crystalline phase which is speculated to be H2Ti2O5·H2O. This crystalline phase disappears at 250 °C, with the material still in the amorphous state. The crystalline LTO phase starts at approximately 550 °C, with anatase co-crystallizing with the spinel phase. Rutile appears at 600 °C and co-crystallizes with the final product at 850 °C, where anatase is no longer seen. The rutile impurity remains present after cooling the material to room temperature, and results indicate that prolonged heating at 850 °C is required to reduce the rutile content. Rietveld refinement of diffraction patterns show that the unit-cell parameter increases with increasing temperature, coupled with a decrease when cooling the sample. The crystallite sizes follow the same trend, with a significant increase above temperatures of 750 °C.

Type
Technical Article
Copyright
Copyright © 2020 International Centre for Diffraction Data

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abureden, S., Hassan, F. M., Lui, G., Ahn, W., Sy, S., Yu, A., and Chen, Z. (2016). “Multigrain electrospun nickel doped lithium titanate nanofibers with high power lithium ion storage,” J. Mater. Chem. A 4, 1263812647.CrossRefGoogle Scholar
Ahmad, S., Kanaujia, P., Niu, W., Baumberg, J., and Vijaya Prakash, G. (2014). “In-situ intercalation dynamics in inorganic-organic layered perovskite thin films,” ACS Appl. Mater. Interfaces 6, 1023810247.CrossRefGoogle ScholarPubMed
Arruda, L. B., Santos, C. M., Orlandi, M. O., Schreiner, W. H., and Lisboa-Filho, P. N. (2015). “Formation and evolution of TiO2 nanotubes in alkaline synthesis,” Ceram. Int. 41, 28842891.CrossRefGoogle Scholar
Bhatti, H. S., Anjum, D. H., Ullah, S., Ahmed, B., Habib, A., Karim, A., and Hasanain, S. K. (2016). “Electrochemical characteristics and Li+ ion intercalation kinetics of dual-phase Li4Ti5O12/Li2TiO3 composite in the voltage range 0–3 V,” J. Phys. Chem. C 120, 95539561.CrossRefGoogle Scholar
Bruker, A. (2016). Topas Manual, Version 6.0 (Computer Software) (Bruker Software, West Germany).Google Scholar
Coelho, J., Pokle, A., Park, S. H., McEvoy, N., Berner, N. C., Duesberg, G. S., and Nicolosi, V. (2017). “Lithium titanate/carbon nanotubes composites processed by ultrasound irradiation as anodes for lithium ion batteries,” Sci. Rep. 7, 7614.CrossRefGoogle ScholarPubMed
Deschanvres, A., Raveau, B., and Sekkal, Z. (1971). “Mise en evidence et etude cristallographique d'une nouvelle solution solide de type spinelle Li1+xTi2−xO4 0 ⩽ x ⩽ 0, 333,” Mater. Res. Bull. 6, 699704.CrossRefGoogle Scholar
Dorrian, J. F., and Newnham, R. E. (1969). “Refinement of the structure of Li2TiO3,” Mater. Res. Bull. 4, 179183.CrossRefGoogle Scholar
Downs, R. T., and Hall-Wallace, M. (2003). “The American mineralogist crystal structure database,” Am. Mineral. 88, 247250.Google Scholar
Etacheri, V., Kuo, Y., Van der Ven, A., and Bartlett, B. M. (2013). “Mesoporous TiO2–B microflowers composed of (1 1 0) facet-exposed nanosheets for fast reversible lithium-ion storage,” J. Mater. Chem. A 1, 1202812032.CrossRefGoogle Scholar
Ganapathy, S., and Wagemaker, M. (2012). “Nanosize storage properties in spinel Li4Ti5O12 explained by anisotropic surface lithium insertion,” ACS Nano 6, 87028712.CrossRefGoogle ScholarPubMed
Grazulis, S., Chateigner, D., Downs, R. T., Yokochi, A. F. T., Quiros, M., Lutterotti, L., Manakova, E., Butkus, J., Moeck, P., and Le Bail, A. (2009). “Crystallography Open Database – an open-access collection of crystal structures,” J. Appl. Cryst. 42, 726729.CrossRefGoogle ScholarPubMed
Gražulis, S., Daškevič, A., Merkys, A., Chateigner, D., Lutterotti, L., Quirós, M., Serebryanaya, N. R., Moeck, P., Downs, R. T., and Le Bail, A. (2012). “Crystallography Open Database (COD): an open-access collection of crystal structures and platform for world-wide collaboration,” Nucleic Acids Res. 40, D420D427.CrossRefGoogle ScholarPubMed
Gražulis, S., Merkys, A., Vaitkus, A., and Okulič-Kazarinas, M. (2015). “Computing stoichiometric molecular composition from crystal structures,” J. Appl. Cryst. 48, 8591.CrossRefGoogle ScholarPubMed
Guo, Q., Wang, Q., Chen, G., Xu, H., Wu, J., and Li, B. (2016). “Molten salt synthesis of transition metal oxides doped Li4Ti5O12 as anode material of Li-Ion battery,” ECS Trans. 72, 1123.CrossRefGoogle Scholar
Han, S. W., Ryu, J. H., Jeong, J., and Yoon, D. H. (2013). “Solid-state synthesis of Li4Ti5O12 for high power lithium ion battery applications,” J. Alloys Compd. 570, 144149.CrossRefGoogle Scholar
Hao, Y., Lai, Q., Xu, Z., Liu, X., and Ji, X. (2005). “Synthesis by TEA sol–gel method and electrochemical properties of Li4Ti5O12 anode material for lithium-ion battery,” Solid State Ion. 176, 12011206.CrossRefGoogle Scholar
Hao, G., Li, N., Li, D., Dai, C., and Wang, D. (2008). “Study on the effect of Li doping in spinel Li4+xTi5-xO12 (0≤x≥0.2) materials for lithium-ion batteries,” Electrochem. Commun. 10, 10311034.Google Scholar
Haro-González, P., Pedroni, M., Piccinelli, F., Martín, L. L., Polizzi, S., Giarola, M., Mariotto, G., Speghini, A., Bettinelli, M., and Martín, I. R. (2011). “Synthesis, characterization and optical spectroscopy of Eu3+ doped titanate nanotubes,” J. Lumin. 131, 24732477.CrossRefGoogle Scholar
Hatfield, J. D., Eades, J. L., and McClellan, G. H. (1971). Investigation of the Reactivities of Limestone to Remove Sulfur Dioxide from Fuel Gas (Tennessee Valley Authority, Division of Chemical Development, Fundamental Research Branch, Muscle Shoals, Alabama).Google Scholar
Huynh, L. T. N., Ha, C. T. D., Nguyen, V. D., Nguyen, D. Q., Le, M. L. P., and Man Tran, V. (2019). “Structure and electrochemical properties of Li4Ti5O12 prepared via low-temperature precipitation,” J. Chem. 2019, 7.CrossRefGoogle Scholar
ICDD (2002). PDF-2 2004 (Database), edited by Dr. Soorya Kabekkodu, International Centre for Diffraction Data, Newtown Square, PA, USA.Google Scholar
Karhunen, T., Välikangas, J., Torvela, T., Lähde, A., and Lassi, U. (2016). “Effect of doping and crystallite size on the electrochemical performance of Li4TI5O12,” J. Alloys Compd. 659, 132137.CrossRefGoogle Scholar
Khatun, N., Anita, , Rajput, P., Bhattacharya, D., Jha, S. N., Biring, S., and Sen, S. (2017). “Anatase to rutile phase transition promoted by vanadium substitution in TiO2: a structural, vibrational and optoelectronic study,” Ceram. Int. 43, 1412814134.CrossRefGoogle Scholar
Koichi Momma, F. I. (2011). “VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data,” J. Appl. Crystallogr. 44, 5.Google Scholar
Kuo, Y. C., Peng, H. T., Xiao, Y., and Lin, J. Y. (2016). “Effect of starting materials on electrochemical performance of sol-gel-synthesized Li4Ti5O12 anode materials for lithium-ion batteries,” J. Solid State Electr. 20, 16251631.CrossRefGoogle Scholar
Laumann, A. (2010). Novel Routes to Li4Ti5O12 Spinel: Characterization and Phase Relations (Ludwig Maximilian University of Munich, Munich).Google Scholar
Laumann, A., Boysen, H., Bremholm, M., Fehr, K. T., Hoelzel, M., and Holzapfel, M. (2011). “Lithium migration at high temperatures in Li4Ti5O12 studied by neutron diffraction,” Chem. Mater. 23, 27532759.CrossRefGoogle Scholar
Li, N., Liang, J., Wei, D., Zhu, Y., and Qian, Y. (2014). “Solvothermal synthesis of micro-/nanoscale Cu/Li4Ti5O12 composites for high rate Li-ion batteries,” Electrochim. Acta 123, 346352.CrossRefGoogle Scholar
Li, F., Zeng, M., Li, J., and Xu, H. (2015). “Preparation and electrochemical performance of Mg-doped Li4Ti5O12 nanoparticles as anode materials for lithium-ion batteries,” Int. J. Electrochem. Sci. 10, 1044510453.Google Scholar
Li, S., Guo, J., Ma, Q., Yang, Y., Dong, X., Yang, M., Yu, W., Jinxian, W., and Liu, G. (2017). “Electrospun Li4Ti5O12/Li2TiO3 composite nanofibers for enhanced high-rate lithium ion batteries,” J. Solid State Electrochem. 21, 27792790.CrossRefGoogle Scholar
Liang, Q., Cao, N., Song, Z., Gao, X., Hou, L., Guo, T., and Qin, X. (2017). “Co-doped Li4Ti5O12 nanosheets with enhanced rate performance for lithium-ion batteries,” Electrochim. Acta 251, 407414.CrossRefGoogle Scholar
Lin, J. Y., Hsu, C. C., Ho, H. P., and Wu, S. H. (2013). “Sol–gel synthesis of aluminum doped lithium titanate anode material for lithium ion batteries,” Electrochim. Acta 87, 126132.CrossRefGoogle Scholar
Mahmoud, A., Amarilla, J. M., and Saadoune, I. (2015). “Effect of thermal treatment used in the sol–gel synthesis of Li4Ti5O12 spinel on its electrochemical properties as anode for lithium ion batteries,” Electrochim. Acta 163, 213222.CrossRefGoogle Scholar
Meagher, E. P., and Lager, G. A. (1979). “Polyhedral thermal expansion in the TiO2 polymorphs; refinement of the crystal structures of rutile and brookite at high temperature,” Can. Mineral. 17, 7785.Google Scholar
Merkys, A., Vaitkus, A., Butkus, J., Okulič-Kazarinas, M., Kairys, V., and Gražulis, S. (2016). “COD::CIF::Parser: an error-correcting CIF parser for the Perl language,” J. Appl. Cryst. 49, 292301.CrossRefGoogle ScholarPubMed
Ming, H., Ming, J., Li, X., Zhou, Q., Wang, H., Jin, L., Fu, Y., Adkins, J., and Zheng, J. (2014). “Hierarchical Li4Ti5O12 particles co-modified with C&N towards enhanced performance in lithium-ion battery applications,” Electrochim. Acta 116, 224229.CrossRefGoogle Scholar
Mosa, J., Vélez, J. F., Reinosa, J. J., Aparicio, M., Yamaguchi, A., Tadanaga, K., and Tatsumisago, M. (2013). “Li4Ti5O12 thin-film electrodes by sol–gel for lithium-ion microbatteries,” J. Power Sources 244, 482487.CrossRefGoogle Scholar
Ncube, N. M., Mhlongo, W. T., McCrindle, R. I., and Zheng, H. (2018). “The electrochemical effect of Al-doping on Li4Ti5O12 as anode material for lithium-ion batteries,” Mater. Today Proc. 5, 1059210601.CrossRefGoogle Scholar
Ni, H., Song, W., and Fan, L. (2016). “Double carbon decorated lithium titanate as anode material with high rate performance for lithium-ion batteries,” Proc. Natl. Sci. Mater. Int. 26, 283288.CrossRefGoogle Scholar
Nugroho, A., Chung, K. Y., and Kim, J. (2014). “A facile supercritical alcohol route for synthesizing carbon coated hierarchically mesoporous Li4Ti5O12 microspheres,” J. Phys. Chem. C 118, 183193.CrossRefGoogle Scholar
Park, J. S., Baek, S. H., Park, Y., and Kim, J. H. (2014). “Improving the electrochemical properties of Al, Zr Co-doped Li4Ti5O12 as a lithium-ion battery anode material,” J. Korean Phys. Soc. 64, 15451549.CrossRefGoogle Scholar
Priyono, B., Syahrial, A. Z., Herman Yuwono, A., Kartini, E., Marfelly, M., and Furkon Rahmatulloh, W. M. (2015). “Synthesis of lithium titanate (Li4Ti5O12) through hydrothermal process by using lithium hydroxide (LiOH) and titanium dioxide (TiO2) xerogel,” Int. J. Technol. 6, 555564.CrossRefGoogle Scholar
Rai, A. K., Gim, J., Kang, S.-W., Mathew, V., Anh, L. T., Kang, J., Song, J., Paul, B. J., and Kim, J. (2012). “Improved electrochemical performance of Li4Ti5O12 with a variable amount of graphene as a conductive agent for rechargeable lithium-ion batteries by solvothermal method,” Mater. Chem. Phys. 136, 10441051.CrossRefGoogle Scholar
Shen, C. M., Zhang, X. G., Zhou, Y. K., and Li, H. I. (2003). “Preparation and characterization of nanocrystalline Li4Ti5O12 by sol–gel method,” Mater. Chem. Phys. 78, 437441.CrossRefGoogle Scholar
Snyders, C. D., Ferg, E. E., and Billing, D. (2016). “An investigation into the temperature phase transitions of synthesized materials with Al- and Mg-doped lithium manganese oxide spinels by in-situ powder X-ray diffraction,” Powder Diffr. 32, 2330.CrossRefGoogle Scholar
Song, Z., Xu, H., Li, K., Wang, H., and Yan, H. (2005). “Hydrothermal synthesis and photocatalytic properties of titanium acid H2Ti2O5⋅H2O nanosheets,” J. Mol. Catal. A Chem. 239, 8791.CrossRefGoogle Scholar
Starink, M. (2001). “On the meaning of the impingement parameter in kinetic equations of diffusion controlled reactions,” J. Mater. Sci. 36, 44334441.CrossRefGoogle Scholar
Sugimoto, T., Zhou, X., and Muramatsu, A. (2003). “Synthesis of uniform anatase TiO2 nanoparticles by gel–sol method: 3. Formation process and size control,” J. Colloid Interface Sci. 259, 4352.CrossRefGoogle ScholarPubMed
Sun, X., Radovanovic, P. V., and Cui, B. (2015). “Advances in spinel Li4Ti5O12 anode materials for lithium-ion batteries,” New J. Chem. 39, 3863.CrossRefGoogle Scholar
Syahrial, A. Z., Priyono, B., Yuwono, A. H., Kartini, E., Jodi, H., and Johansyah, J. (2016). “Synthesis of lithium titanate (Li4Ti5O12) by addition of excess lithium carbonate (Li2CO3) in titanium dioxide (TiO2) xerogel,” Int. J. Technol. 7, 392400.CrossRefGoogle Scholar
Wang, Z., Chen, G., Xu, J., Lv, Z., and Yang, W. (2011). “Synthesis and electrochemical performances of Li4Ti4.95Al0.05O12/C as anode material for lithium-ion batteries,” J. Phys. Chem. Solids 72, 773778.CrossRefGoogle Scholar
Wang, W., Jiang, B., Xiong, W., Wang, Z., and Jiao, S. (2013). “A nanoparticle Mg-doped Li4Ti5O12 for high rate lithium-ion batteries,” Electrochim. Acta 114, 198204.CrossRefGoogle Scholar
Wang, Y., Zhou, A., Dai, X., Feng, L., Li, J., and Li, J. (2014). “Solid-state synthesis of submicron-sized Li4Ti5O12/Li2TiO3 composites with rich grain boundaries for lithium ion batteries,” J. Power Sources 266, 114120.CrossRefGoogle Scholar
Wang, C., Wang, S., He, Y.-B., Tang, L., Han, C., Yang, C., Wagemaker, M., Li, B., Yang, Q.-H., Kim, J.-K., and Kang, F. (2015). “Combining fast Li-ion battery cycling with large volumetric energy density: grain boundary induced high electronic and ionic conductivity in Li4Ti5O12 spheres of densely packed nanocrystallites,” Chem. Mater. 27, 56475656.CrossRefGoogle Scholar
Wyckoff, R. W. G. (1963). Crystal Structures (New York, NY), 2nd ed., pp. 239444.Google Scholar
Xie, Z., Li, X., Li, W., Chen, M., and Qu, M. (2015). “Graphene oxide/lithium titanate composite with binder-free as high capacity anode material for lithium-ion batteries,” J. Power Sources 273, 754760.CrossRefGoogle Scholar
Yi, T. F., Jiang, L. J., Shu, J., Yue, C. B., Zhu, R. S., and Qiao, H. B. (2010). “Recent development and application of Li4Ti5O12 as anode material of lithium ion battery,” J. Phys. Chem. Solids 71, 12361242.CrossRefGoogle Scholar
Zhang, Z., Cao, L., Huang, J., Wang, D., Wu, J., and Cai, Y. (2013). “Hydrothermal synthesis of Li4Ti5O12 microsphere with high capacity as anode material for lithium ion batteries,” Ceram. Int. 39, 26952698.CrossRefGoogle Scholar
Zhu, C., Liu, J., Yu, X., Zhang, Y., Zhang, Y., Jiang, X., Wang, S., Wang, Q., and Dong, P. (2019). “Enhance the electrochemical performance of Li4Ti5O12 with Co doping via a facile mechanical activation strategy,” J. Mater. Sci. Mater. Electron. 30, 58665873.CrossRefGoogle Scholar
Supplementary material: File

van Niekerk et al. supplementary material

Figures S1-S12

Download van Niekerk et al. supplementary material(File)
File 853.8 KB