Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T22:00:35.275Z Has data issue: false hasContentIssue false

Ab initio determination and Rietveld refinement of the crystal structure of Ni0.50TiO(PO4)

Published online by Cambridge University Press:  10 January 2013

P. Gravereau
Affiliation:
Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB-CNRS), 87, Av. du Dr. A. Schweitzer-33608 Pessac Cedex, France
J. P. Chaminade
Affiliation:
Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB-CNRS), 87, Av. du Dr. A. Schweitzer-33608 Pessac Cedex, France
B. Manoun
Affiliation:
Laboratoire de Chimie des Matériaux Solides, Université Hassan II-Mohammedia, Faculté des Sciences Ben M’Sik, Casablanca, Morocco
S. Krimi
Affiliation:
Laboratoire de Chimie des Matériaux Solides, Université Hassan II-Mohammedia, Faculté des Sciences Ben M’Sik, Casablanca, Morocco
A. El Jazouli
Affiliation:
Laboratoire de Chimie des Matériaux Solides, Université Hassan II-Mohammedia, Faculté des Sciences Ben M’Sik, Casablanca, Morocco

Abstract

The structure of the oxyphosphate Ni0.50TiO(PO4) has been determined ab initio from conventional X-ray powder diffraction data by the “heavy atom” method. The cell is monoclinic (space group P21/c, Z=4) with a=7.3830(5) Å, b=7.3226(5) Å, c=7.3444(5) Å, and β=120.233(6)°. Refinement of 46 parameters by the Rietveld method, using 645 reflexions, leads to cRwp=0.152, cRp=0.120, and RB=0.043. The structure of Ni0.50TiO(PO4) can be described as a TiOPO4 framework constituted by chains of tilted corner-sharing TiO6 octahedra running parallel to the c axis, crosslinked by phosphate tetrahedra and in which one-half of octahedral cavities created are occupied by Ni atoms. Ti atoms are displaced from the center of octahedra units in alternating long (2.231) and short (1.703 Å) Ti–O bonds along chains.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bérar, J.-F., and Lelann, P. (1991). “E.S.D.'s and estimated probable error obtained in Rietveld refinements with local corrections,” J. Appl. Crystallogr. 24, 15.CrossRefGoogle Scholar
Bierlein, J. D., and Vanherzeele, H. (1989). “Potassium titanyl phosphate: Properties and new applications,” J. Opt. Soc. Am. B 6, 622633.CrossRefGoogle Scholar
Boultif, A., and Louër, D. (1991). “Indexing of powder diffraction patterns for low symmetry lattices by the successive dichotomy method,” J. Appl. Crystallogr. 24, 987993.CrossRefGoogle Scholar
Brese, N. E., and O’Keeffe, M. (1991). “Bond-valence parameters for solids,” Acta Crystallogr., Sect. B: Struct. Sci. 47, 192197.CrossRefGoogle Scholar
Brown, I. D., and Altermatt, D. (1985). “Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database,” Acta Crystallogr., Sect. B: Struct. Sci. 41, 244247.CrossRefGoogle Scholar
Caglioti, G., Paoletti, A., and Ricci, F. P. (1958). “Choice of collimators for a crystal spectrometer for neutron diffraction,” Nucl. Instrum. 3, 223228.CrossRefGoogle Scholar
El Jazouli, A., El Bouari, A., Fakrane, H., Housni, A., Lamire, M., Mansouri, I., Olazcuaga, R., and Le Flem, G. (1997). “Crystallochemistry and structural study of some nasicon-like phosphates,” J. Alloys Compd. 262–263, 4953.CrossRefGoogle Scholar
El Jazouli, A., Krimi, S., Manoun, B., Chaminade, J. P., Gravereau, P., and De Waal, D. (1998). “Preparation and structural characterisation of two new titanium phosphates Na 4Ca 0.5Ti(PO 4)3 and Ni 0.5TiOPO 4,Ann. Chim. Sci. Mat. 23, 710.CrossRefGoogle Scholar
Glaum, R., and Gruehn, R. (1990). “Zum chemischen transport von phosphaten des dreiund vierwertigen titans,” Z. Anorg. Allg. Chem. 580, 7894.CrossRefGoogle Scholar
Glaum, R., Walter-Peter, M., Özalp, D., and Gruehn, R. (1990). “Zum chemischen transport von phosphaten M 2P 2O 7 (M=Mg, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd) Die erstmalige Darstellung von chrom(II)-pyrophosphat,” Z. Anorg. Allg. Chem. 601, 145162.CrossRefGoogle Scholar
Hagman, L. O., and Kierkegaard, P. (1968). “The crystal structure of NaMe 2IV(PO 4)3; Me=Ge, Ti, Zr,” Acta Chem. Scand. 22, 18221832.CrossRefGoogle Scholar
Krimi, S., Mansouri, I., El Jazouli, A., Chaminade, J. P., Gravereau, P., and Le Flem, G. (1993). “The structure of Na 5Ti(PO 4)3,J. Solid State Chem. 105, 561566.CrossRefGoogle Scholar
Nagornyi, P. G., Kapshuk, A. A., Stus’, N. V., Slobodyanik, N. S., and Chernega, A. N. (1991). “Preparation and structure of the lithium titanium double phosphate LiTiOPO 4,Russ. J. Inorg. Chem. 36, 15511552.Google Scholar
Reinauer, F., Glaum, R., and Gruehn, R. (1994). “Preparation and chemical vapour transport of mixed valent titanium (III, IV)-phosphates. With a note on the crystal structure of titanium (IV)-orthophosphate Ti 5P 4O 20,Eur. J. Solid State Inorg. Chem. 31, 779791.Google Scholar
Rodriguez-Carvajal, J. (1990). “FULLPROF: A program for Rietveld refinement and pattern matching analysis,” in Collected Abstract of Powder Diffraction Meeting, Toulouse, France, p. 127.Google Scholar
Sheldrick, G. M. (1986). “SHELXS86: A program for the solution of the crystal structures,” University of Göttingen, Germany.Google Scholar
Sheldrick, G. M. (1993). “SHELXL93: A program for crystal structure refinement,” University of Göttingen, Germany.Google Scholar
Stucky, G. D., Phillips, M. L. F., and Gier, T. E. (1989). “The potassium titanyl phosphate structure field: A model for new nonlinear optical materials,” Chem. Mater. 1, 492509.CrossRefGoogle Scholar
Tordjman, I., Masse, R., and Guitel, J. C. (1974). “Structure cristalline du monophosphate KTiPO 5,Z. Kristallogr. 139, 103115.CrossRefGoogle Scholar