Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T18:14:55.502Z Has data issue: false hasContentIssue false

1-aminoanthraquinone: Crystal data and a model of molecular packing

Published online by Cambridge University Press:  10 January 2013

A. V. Yatsenko
Affiliation:
General Chemistry Faculty, Department of Chemistry, Moscow State University, 119899 Moscow, Russia
V. V. Chernyshev
Affiliation:
General Chemistry Faculty, Department of Chemistry, Moscow State University, 119899 Moscow, Russia
L. A. Aslanov
Affiliation:
General Chemistry Faculty, Department of Chemistry, Moscow State University, 119899 Moscow, Russia
H. Schenk
Affiliation:
Laboratory for Crystallography, Institut for Molecular Studies, University of Amsterdam, Nieuwe Achtergracht 166, 1018WV Amsterdam, The Netherlands

Abstract

The powder diffraction data for 1-aminoanthraquinone at 295 K (P1¯, No. 2, Z=1) are given. The cell parameters found are a=8.205(1), b=8.396(1), c=3.7882(3) Å, α=93.46(1), β=92.57(1), γ=105.13(1)°. The crystal packing model is proposed giving Rb=0.095. The disordered molecule of 1-aminoanthraquinone occupies a special position on the inversion center.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dollase, W. A. (1986). “Correction of intensities for preferred orientation in powder diffractometry: Application of the March model,” J. Appl. Crystallogr. 19, 267272.Google Scholar
Filippini, G., and Gavezzotti, A. (1993). “Empirical intermolecular potentials for organic crystals: The ‘6-exp’ approximation revisited,” Acta Crystallogr., Sect. B: Struct. Sci. B49, 868880.CrossRefGoogle Scholar
Janczak, J. (1995). “2-Amino-anthraquinone,” Acta Crystallogr., Sect. C: Cryst. Struct. Commun. C51, 13811383.Google Scholar
Jansen, J., Peschar, R., and Schenk, H. (1992a). “On the determination of accurate intensities from powder diffraction data I. Whole-pattern fitting with a least-squares procedure,” J. Appl. Crystallogr. 25, 231236.Google Scholar
Jansen, J., Peschar, R., and Schenk, H. (1992b). “On the determination of accurate intensities from powder diffraction data II. Estimation of intensities of overlapping reflections,” J. Appl. Crystallogr. 25, 237243.CrossRefGoogle Scholar
Jones, P. G., Boldt, P., and Zippel, S. (1993). “1-Amino-4-(4-methoxyphenoxy)-anthraquinone,” Z. Kristallogr. 208, 139141.Google Scholar
Marasinghe, P. A. B., and Gillispie, G. D. (1989). “Intramolecular hydrogen bonding. IX. Theoretical geometries of substituted anthraquinones relevant to proton transfer studies,” Chem. Phys. 136, 249257.CrossRefGoogle Scholar
Ogawa, K., and Kobayashi, H. (1968). “Crystal structure of monosubstituted anthraquinone derivatives. I. Crystal structure of 1-aminoanthraquinon,” Sci. Rep. (Osaka Univ.) 17, 1521.Google Scholar
Peschar, R., Schenk, H., and Čapkovà, P. (1995). “Preferred-orientation correction and normalization procedure for ab initio structure determination from powder data,” J. Appl. Crystallogr. 28, 127140.CrossRefGoogle Scholar
Sheldrick, G. M. (1993). “SHELXL93. Program for the refinement of crystal structures,” Univeristy of Göttingen, Germany.Google Scholar
Werner, P.-E., Eriksson, L., and Westdahl, M. (1985). “TREOR—a semi-exhaustive trial-and-error powder indexing program for all symmetries,” J. Appl. Crystallogr. 18, 367370.Google Scholar
Young, R. A., and Wiles, D. B. (1982). “Profile shape functions in Rietveld refinements,” J. Appl. Crystallogr. 15, 430438.CrossRefGoogle Scholar
Zlokazov, V. B., and Chernyshev, V. V. (1992). “MRIA—a program for a full profile analysis of powder multiphase neutron-diffraction time-of-flight (direct and Fourier) spectra,” J. Appl. Crystallogr. 25, 447451.CrossRefGoogle Scholar