Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-09T18:11:51.172Z Has data issue: false hasContentIssue false

“Doing CRISPR”

The novel case of Atlantic salmon, science and industry

Published online by Cambridge University Press:  29 November 2018

Dorothy Jane Dankel*
Affiliation:
Universitetet i Bergen, Det Matematisk-naturvitenskapelige Fakultet
*
Correspondence: Dorothy Jane Dankel, Department of Biological Sciences, University of Bergen, Thormøhlensgate 53B, 5006 Bergen, Norway. Email: [email protected]
Get access

Abstract

Salmon farming is a key industry in Norway, with firsthand value of more than 60 billion Norwegian crowns in 2017. The salmon industry is a driving force for biotechnological applications in the marine sector. The recent release of the Atlantic salmon reference genome offers new opportunities to solve major aquaculture bottlenecks that currently limit expansion of the industry. One major bottleneck is the genetic impact of escaped farmed salmon on wild populations. To solve this problem, the industry can use sterile salmon in production. As shown by Wargelius et al., sterile salmon can be made by preventing the formation of germ cells through genome editing using the CRISPR-Cas9 method. This approach solves problems of genetic introgression and precocious maturation. However, genome editing of animals, especially for human consumption, raises ethical as well as safety and legal questions. These social and ethical aspects can have tremendous impact in analyzing the final result of salmon farming (e.g., consumer acceptability of a fresh or frozen filet or similar salmon product) but also can be examined “upstream” by describing and assessing the research communities that promote and carry out the science that underpins the salmon industry. Who produces the scientific “facts” that govern the Norwegian aquaculture industry? How do these scientific communities work together? What are the societal impacts of this science? This article uses ethnographical observation and interviews to describe the state-of-the-art of CRISPR gene-editing procedures currently employed in the science and industry collaboration in Norway.

Type
Article
Copyright
© Association for Politics and the Life Sciences 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lander, E. S., “The heroes of CRISPR,” Cell , 2016, 164(1): 1828.Google Scholar
Gaj, T., Gersbach, C. A., and Barbas, C. F., “ZFN, TALEN and CRISPR/Cas-based methods for genome engineering,” Trends in Biotechnology , 2013, 31(7): 397405.Google Scholar
Miller, J. C., Tan, S., Qiao, G., Barlow, K. A., Wang, J., Xia, D. F., and Meng, X. et al. , “A TALE nuclease architecture for efficient genome editing,” Nature Biotechnology , 2011, 29(2): 143148.Google Scholar
Zhang, F., Cong, L., Lodato, S., Kosuri, S., Church, G., and Arlotta, P., “Programmable sequence-specific transcriptional regulation of mammalian genome using designer TAL effectors,” Nature Biotechnology , 2011, 29(2): 149153.Google Scholar
Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S., and Gregory, P. D., “Genome editing with engineered zinc finger nucleases,” Nature Reviews Genetics , 2010, 11(9): 636646.Google Scholar
Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., and Hsu, P. D. et al. , “Multiplex genome engineering using CRISPR/Cas systems,” Science , 2013, 339(6121): 819823.Google Scholar
Ishino, Y., Shinagawa, H., Makino, K., Amemura, M., and Nakata, A., “Nucleotide sequence of the IAP gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product,” Journal of Bacteriology , 1987, 169(12): 54295433.Google Scholar
Mojica, F. J. M. and Montoliu, L., “On the origin of CRISPR-Cas technology: From prokaryotes to mammals,” Trends in Microbiology , 2016, 24(10): 811820.Google Scholar
Ratner, H. K., Sampson, T. R., and Weiss, D. S., “Overview of CRISPR-Cas9 biology,” Cold Spring Harbor Protocols , 2016(12): pdb.top 088849.Google Scholar
Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D. A., and Horvath, P., “CRISPR provides acquired resistance against viruses in prokaryotes,” Science , 2007, 315(5819): 1709.Google Scholar
Garneau, J. E., Dupuis, M.-E., Villion, M., Romero, D. A., Barrangou, R., Boyaval, P., and Fremaux, C. et al. , “The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA,” Nature , 2010, 468(7320): 6771.Google Scholar
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., and Charpentier, E., “A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity,” Science , 2012, 337(6096): 816.Google Scholar
Ledford, H., “CRISPR, the disruptor,” Nature , 2015, 522(7554): 2024.Google Scholar
Regjerningens havstrategi: ny vekst, stolt historie (Norwegian Government’s Ocean Strategy: New growth, proud history) (2017, in Norwegian) https://www.regjeringen.no/no/dokumenter/ny-vekst-stolt-historie/id2552578/.Google Scholar
Bernard, H. R., Research Methods in Anthropology: Qualitative and Quantitative Approaches (New York: Altamira Press, 2006).Google Scholar
Cash, D. W., Clark, W. C., Alcock, F., Dickson, N. M., Eckley, N., Guston, D. H., Jäger, J., and Mitchell, R. B., “Knowledge systems for sustainable development,” Proceedings of the National Academy of Sciences , 2003, 100(14): 80868091.Google Scholar
Taranger, G. L., Karlsen, Ø., Bannister, R. J., Glover, K. A., Husa, V., Karlsbakk, E., and Kvamme, B. O. et al. , “Risk assessment of the environmental impact of Norwegian Atlantic salmon farming,” ICES Journal of Marine Science: Journal du Conseil , 2015, 72(3): 9971021.Google Scholar
Heino, M., Svåsand, T., Wennevik, V., and Glover, K. A., “Genetic introgression of farmed salmon in native populations: quantifying the relative influence of population size and frequency of escapees,” Aquaculture Environment Interactions , 2015, 6(2): 185190.Google Scholar
Glover, K. A., Quintela, M., Wennevik, V., Besnier, F., Sørvik, A. G. E., and Skaala, Ø., “Three decades of farmed escapees in the wild: A spatio-temporal analysis of Atlantic salmon population genetic structure throughout Norway,” PLOS ONE , 2012, 7(8): e43129.Google Scholar
Wong, T.-T. and Zohar, Y., “Production of reproductively sterile fish: A mini-review of germ cell elimination technologies,” General and Comparative Endocrinology , 2015, 221: 38.Google Scholar
Cotter, D., O’Donovan, V., O’Maoiléidigh, N., Rogan, G., Roche, N., and Wilkins, N. P., “An evaluation of the use of triploid Atlantic salmon (Salmo salar L.) in minimising the impact of escaped farmed salmon on wild populations,” Aquaculture , 2000, 186(1–2): 6175.Google Scholar
Fraser, T. W. K., Hansen, T., Skjæraasen, J. E., Mayer, I., Sambraus, F., and Fjelldal, P. G., “The effect of triploidy on the culture performance, deformity prevalence, and heart morphology in Atlantic salmon,” Aquaculture , 2013, 416–417: 255264.Google Scholar
Reardon, S., “Welcome to the CRISPR zoo,” Nature , 2016, 531(7593): 160163.Google Scholar
Delgado, A., “DIYbio: Making things and making futures,” Futures , 2013, 48: 6573.Google Scholar
Delgado, A. and Callén, B., “Do-it-yourself biology and electronic waste hacking: A politics of demonstration in precarious times,” Public Understanding of Science , 2016, 26(2): 179194.Google Scholar
Edvardsen, R. B., Leininger, S., Kleppe, L., Skaftnesmo, K. O., and Wargelius, A., “Targeted mutagenesis in Atlantic salmon (Salmo salar L.) using the CRISPR/Cas9 system induces complete knockout individuals in the F0 generation,” PLOS ONE , 2014, 9(9): e108622.Google Scholar
Davidson, W. S., Koop, B. F., Jones, S. J. M., Iturra, P., Vidal, R., Maass, A., and Jonassen, I. et al. , “Sequencing the genome of the Atlantic salmon (Salmo salar),” Genome Biology , 2010, 11(9): 403.Google Scholar
Lien, S., Koop, B. F., Sandve, S. R., Miller, J. R., Kent, M. P., Nome, T., and Hvidsten, T. R. et al. , “The Atlantic salmon genome provides insights into rediploidization,” Nature , 2016, 533(7602): 200205.Google Scholar
Marcus, E., “Credibility and reproducibility,” Cell , 2016, 159(5): 965966.Google Scholar
Organisation for Economic Co-operation and Development (OECD), Trust in Government(Paris: OECD, 2013).Google Scholar
Harremoës, P., Gee, D., MacGarvin, M., Stirling, A., Keys, J., Wynne, B., and Guedes Vaz, S., “Late lessons from early warnings: The precautionary principle 1896–2000,” Report 22/2001, European Environment Agency, 2001, https://www.eea.europa.eu/publications/environmental_issue_report_2001_22, accessed July 22, 2018.Google Scholar
Gee, D., Grandjean, P., Hansen, S. F., van den Hove, S., MacGarvin, M., Martin, J., and Nielsen, G. et al. , ‘Late lessons from early warnings: Science, precaution, innovation’ Report 1/2013, European Environment Agency, 2013, https://www.eea.europa.eu/publications/late-lessons-2, accessed July 22, 2018.Google Scholar
Asche, F., Guttormsen, A. G., and Tveterås, R., “Environmental problems, productivity and innovations in Norwegian salmon aquaculture,” Aquaculture Economics and Management , 1999, 3(1): 1929, at p. 27.Google Scholar
Jasanoff, S., ed., States of Knowledge: The Co-production of Science and Social Order (New York: Routledge, 2004).Google Scholar
Lanphier, E., Urnov, F., Haecker, S. E., Werner, M., and Smolenski, J., “Don’t edit the germ line,” Nature , 2015, 519(7544): 410411.Google Scholar
Cyranoski, D. and Reardon, S., “Chinese scientists genetically modify human embryos,” Nature , 2015, April 22, 2015, https://www.nature.com/news/chinese-scientists-genetically-modify-human-embryos-117378, accessed July 22, 2018.Google Scholar
Baltimore, D., Berg, P., Botchan, M., Carroll, D., Charo, R. A., Church, G., and Corn, J. E. et al. , “A prudent path forward for genomic engineering and germline gene modification,” Science , 2015, 348(6230): 3638.Google Scholar
Grønli, K. S., “Frykt og håp rundt ny gentekonologi [Fear and hope around new gene technology],” Forskningsetikk , October 13, 2015.Google Scholar
Fletcher, R., “Gene-editing offers vast potential,” Fish Farming Expert , October 18, 2016, https://www.fishfarmingexpert.com/article/gene-editing-offers-vast-potential/, accessed July 22, 2018.Google Scholar
Edvardsen, R. B. and Wargelius, A., “Verdens første laks uten kjønnsceller [World’s first salmon without germ cells],” in Aftenposten, Norway, Oslo, February 29, 2016.Google Scholar
Time, J. K., “Genetisk kirugi [Genetic surgery],” in Morgenbladet, Norway, Oslo, April 17, 2015.Google Scholar
Wargelius, A., Leininger, S., Skaftnesmo, K. O., Kleppe, L., Andersson, E., Taranger, G. L., Schulz, R. W., and Edvardsen, R. B., “Dnd knockout ablates germ cells and demonstrates germ cell independent sex differentiation in Atlantic salmon,” Scientific Reports , 2016, 6: 21284.Google Scholar
Scott, C., “Treading the line between sensational and groundbreaking science,” American Journal of Bioethics , 2015, 15(12): 12.Google Scholar
Reardon, S., “Global summit reveals divergent views on human gene editing,” Nature , 2015, 528(7581): 173.Google Scholar
Callaway, E., “Gene-editing research in human embryos gains momentum,” Nature , 2016, 532(7599): 289290.Google Scholar
Waltz, E., “CRISPR-edited crops free to enter market, skip regulation,” Nature Biotechnology , 2016, 34(6): 582.Google Scholar
Heller, C., “From scientific risk to paysan savoir-faire: Peasant expertise in the French and global debate over GM crops,” Science as Culture , 2002, 11(1): 537.Google Scholar
Tait, J., “More Faust than Frankenstein: The European debate about the precautionary principle and risk regulation for genetically modified crops,” Journal of Risk Research , 2001, 4(2): 175189.Google Scholar
Delgado, A., Kjølberg, K. L., and Wickson, F., “Public engagement coming of age: From theory to practice in STS encounters with nanotechnology,” Public Understanding of Science , 2010, 20(6): 826845.Google Scholar
Pennisi, E., “The CRISPR craze,” Science , 2013, 341(6148): 833836.Google Scholar