Hostname: page-component-5f745c7db-nzk4m Total loading time: 0 Render date: 2025-01-07T00:27:01.084Z Has data issue: true hasContentIssue false

Bayesian Methods in Political Science: Introduction to the Virtual Issue

Published online by Cambridge University Press:  04 January 2017

Jeff Gill*
Affiliation:
Washington University, St. Louis, [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Introduction
Copyright
Copyright © Society for Political Methodology 2012 

References

Achen, C. H. (1978). Measuring Representation. American Journal of Political Science 22, 475510.CrossRefGoogle Scholar
Bartels, L. M. (1997). Specification Uncertainty and Model Averaging. American Journal of Political Science 41, 641674.CrossRefGoogle Scholar
Brandt, P. T. and Freeman, J. R. (2006). Advances in Bayesian Time Series Modeling and the Study of Politics: Theory Testing, Forecasting, and Policy Analysis Political Analysis 14, 136.CrossRefGoogle Scholar
Brandt, P. T. and Freeman, J. R. (2009). Modeling Macro-Political Dynamics. Political Analysis 17, 113142.CrossRefGoogle Scholar
Brandt, P. T., Colaresi, M., and Freeman, J. R. (2008). The Dynamics of Reciprocity, Accountability, and Credibility. Journal of Conflict Resolution 52, 343374.CrossRefGoogle Scholar
Brandt, P. T., Freeman, J. R., and Schrodt, P. A. (2009). Real Time, Time Series Forecasting of Inter- and Intra-State Political Conflict. Conflict Management and Peace Science 28, 4164.CrossRefGoogle Scholar
Birnbaum, A. (1962). On the Foundations of Statistical Inference. Journal of the American Statistical Association 57, 269306.CrossRefGoogle Scholar
Doan, T., Litterman, R., and Sims, C. (1984). Forecasting and Conditional Projection Using Realistic Prior Distributions. Econometric Reviews 3, 1âĂŞ100.Google Scholar
Fisher, R. A. (1922). On the Mathematical Foundations of Theoretical Statistics. Philosophical Transactions of the Royal Statistical Society of London A 222, 309360.Google Scholar
Fisher, R. A. (1925a). Statistical Methods for Research Workers. Edinburgh: Oliver and Boyd.Google Scholar
Fisher, R. A. (1925b). Theory of Statistical Estimation. Proceedings of the Cambridge Philosophical Society 22. 700725.CrossRefGoogle Scholar
Gigerenzer, G. and Murray, D. J. (1987). Cognition As Intuitive Statistics. Lawrence Erlbaum Associates, Hillsdale, NJ.Google Scholar
Gill, J. (1999). The Insignificance of Null Hypothesis Significance Testing. Political Research Quarterly 52, 647674.CrossRefGoogle Scholar
Gill, J. 2008. Is partial-dimension convergence a problem for inferences from MCMC algorithms? Political Analysis 16, 153178.CrossRefGoogle Scholar
Gelfand, A. E. and Smith, A. F. M. (1990). Sampling Based Approaches to Calculating Marginal Densities. Journal of the American Statistical Association 85, 398409.CrossRefGoogle Scholar
Gelman, A. and King, G. (1994). A Unified Method of Evaluating Electoral Systems and Redistricting Plans. American Journal of Political Science 38, 514554.CrossRefGoogle Scholar
Grimmer, J. (2010). A Bayesian Hierarchical Topic Model for Political Texts: Measuring Expressed Agendas in Senate Press Releases. Political Analysis 18, 135.CrossRefGoogle Scholar
Katz, J. N. and King, G. (1999). A Statistical Model for Multiparty Electoral Data. American Political Science Review 93, 1532.CrossRefGoogle Scholar
Kyung, M., Gill, J. and Casella, G. (2009). Characterizing the variance improvement in linear Dirichlet random effects models. Statistics and Probability Letters 79, 23432350.CrossRefGoogle Scholar
Kyung, M., Gill, J. and Casella, G. (2010). Estimation in Dirichlet Random Effects Models. Annals of Statistics, 38, 9791009.CrossRefGoogle Scholar
Martin, A. D. and Quinn, K. M. (2002). Dynamic Ideal Point Estimation via Markov Chain Monte Carlo for the U.S. Supreme Court, 1953–âĂŞ1999. Political Analysis 10, 134153.CrossRefGoogle Scholar
Martin, A. D., Quinn, K. M., Park, J. H. (2011). MCMCpack: Markov Chain Monte Carlo in R. Journal of Statistical Software 42, 121. URL: http://www.jstatsoft.org/v42/i09/.CrossRefGoogle Scholar
Neyman, J. and Pearson, E. S. (1928a). On the Use and Interpretation of Certain Test Criteria for Purposes of Statistical Inference. Part I. Biometrika 20A, 175240.Google Scholar
Neyman, J. and Pearson, E. S. (1928b). On the Use and Interpretation of Certain Test Criteria for Purposes of Statistical Inference. Part II. Biometrika 20A, 263294.Google Scholar
Neyman, J. and Pearson, E. S. (1933a). On the Problem of the Most Efficient Test of Statistical Hypotheses. Philosophical Transactions of the Royal Statistical Society, Series A 231, 289337.Google Scholar
Neyman, J. and Pearson, E. S. (1933b). The Testing of Statistical Hypotheses in Relation to Probabilities. Proceedings of the Cambridge Philosophical Society 24. 492510.CrossRefGoogle Scholar
Neyman, J. and Pearson, E. S. (1936a). Contributions to the Theory of Testing Statistical Hypotheses. Statistical Research Memorandum 1, 137.Google Scholar
Neyman, J. and Pearson, E. S. (1936b). Sufficient Statistics and Uniformly Most Powerful Tests of Statistical Hypotheses. Statistical Research Memorandum 1, 113137.Google Scholar
Pang, X. (2010). Modeling Heterogeneity and Serial Correlation in Binary Time-Series Cross-sectional Data: A Bayesian Multilevel Model with AR(p) Errors. Political Analysis 18, 470498.CrossRefGoogle Scholar
Quinn, K. M. (2004). Bayesian Factor Analysis for Mixed Ordinal and Continuous Responses. Political Analysis 12, 338353.CrossRefGoogle Scholar
Quinn, K. M., Martin, A. D., and Whitford, A. B. (1999). Voter Choice in Multi-Party Democracies: A Test of Competing Theories and Models. American Journal of Political Science 43, 12311247.CrossRefGoogle Scholar
Samaniego, F. J. (2010). A Comparison of the Bayesian and Frequentist Approaches to Estimation. New York: Springer-Verlag.Google Scholar
Sims, C. A. and Zha, T. A. (1998). Bayesian Methods for Dynamic Multivariate Models. International Economic Review 39, 949âĂŞ968.Google Scholar
Spaeth, H. J. (2001). United States Supreme Court Judicial Database, 1953–2000 Terms [Computer File]. Ann Arbor, MI: Inter-University Consortium for Political and Social Research, 16th edition.Google Scholar
Spirling, S. (2007). Bayesian Approaches for Limited Dependent Variable Change Point Problems. Political Analysis 15, 387405.CrossRefGoogle Scholar
Stigler, S. M. (1986). The History of Statistics: The Measurement of Uncertainty before 1900. Cambridge, MA: Harvard University Press.Google Scholar
Tversky, A. and Kahneman, D. (1974). Judgment Under Uncertainty: Heuristics and Biases. Science 185, 11241131.CrossRefGoogle ScholarPubMed
Tversky, A. and Kahneman, D. (1981). The Framing of Decisions and the Psychology of Choice Science, New Series, 211, 4481, 453458.CrossRefGoogle ScholarPubMed
Ulmer, S. S. (1975). $H_0$: Post Hoc Con–Straw-Man Con = 0. American Journal of Political Science 19, 565570.CrossRefGoogle Scholar
Western, B. (1998). Causal Heterogeneity in Comparative Research: A Bayesian Hierarchical Modelling Approach. American Journal of Political Science 42, 12331259.CrossRefGoogle Scholar
Western, B. and Jackman, S. (1994). Bayesian Inference for Comparative Research. American Political Science Review 88, 412423.CrossRefGoogle Scholar