Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-24T12:58:18.592Z Has data issue: false hasContentIssue false

Properties and mineralogy of topsoil in the town of Longyearbyen (Spitsbergen, Norway)

Published online by Cambridge University Press:  04 June 2019

Wojciech Szymański*
Affiliation:
Department of Pedology and Soil Geography, Institute of Geography and Spatial Management, Faculty of Geography and Geology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland
Janusz Siwek
Affiliation:
Department of Hydrology, Institute of Geography and Spatial Management, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland
Michał Skiba
Affiliation:
Department of Mineralogy, Petrology and Geochemistry, Institute of Geological Sciences, Faculty of Geography and Geology, Jagiellonian University, ul. Gronostajowa 3a, 30-387 Kraków, Poland
Bronisław Wojtuń
Affiliation:
Department of Ecology, Biogeochemistry and Environmental Protection, Faculty of Biological Sciences, University of Wrocław, ul. Kanonia 6/8, 50-328 Wrocław, Poland
Aleksandra Samecka-Cymerman
Affiliation:
Department of Ecology, Biogeochemistry and Environmental Protection, Faculty of Biological Sciences, University of Wrocław, ul. Kanonia 6/8, 50-328 Wrocław, Poland
Paweł Pech
Affiliation:
Department of Ecology, Biogeochemistry and Environmental Protection, Faculty of Biological Sciences, University of Wrocław, ul. Kanonia 6/8, 50-328 Wrocław, Poland
Ludmiła Polechońska
Affiliation:
Department of Ecology, Biogeochemistry and Environmental Protection, Faculty of Biological Sciences, University of Wrocław, ul. Kanonia 6/8, 50-328 Wrocław, Poland
Aleksandra Smyrak-Sikora
Affiliation:
Department of Arctic Geology, University Centre in Svalbard, Longyearbyen, Norway
*
Author for correspondence: Wojciech Szymański, Email: [email protected]

Abstract

Soil is one of the most important constituents of an ecosystem, playing a crucial role in many environmental reactions and processes. Despite the fact that many environmental studies were conducted in the vicinity of Longyearbyen, very little is known about the physical and chemical properties as well as mineralogy of soils occurring in this town. Thus, the main aims of this study were: (1) to determine the texture, chemical properties and mineralogy of the topsoil horizons of urban soils occurring in the Longyearbyen area (Spitsbergen, Norway); and (2) to determine and explain their spatial distribution within the area of Longyearbyen. In general, the topsoils are characterised by loamy texture; acidic reaction; quite high content of total organic carbon (TOC); high content of Si, Al and Fe; and low content of K, Na, Ca, Mg and P. Quartz, K-feldspar, plagioclase, mica and chlorite are the prevailing minerals. Differences in the concentration of TOC, total nitrogen and elements in the topsoils are mainly related to the diversity of texture and mineralogy of the local parent material and the development of vegetation cover. The results indicate that topsoils in Longyearbyen are characterised by the natural properties and are not strongly transformed by human activity. However, pollution of soil with trace elements related to coal mining should be checked.

Type
Research Article
Copyright
© Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acosta, A. J., Faz, A., & Martinez-Martinez, S. (2010). Identification of heavy metal sources by multivariable analysis in a typical Mediterranean city (SE Spain). Environmental Monitoring and Assessment, 169, 519530.CrossRefGoogle Scholar
Andersson, M., Ottesen, R. T., & Langedal, M. (2010). Geochemistry of urban surface soils—Monitoring in Trondheim, Norway. Geoderma, 156, 112118.CrossRefGoogle Scholar
Askaer, L., Schmidt, L. B., Elberling, B., Asmund, G., & Jónsdóttir, I. S. (2008). Environmental impact on an Arctic soil-plant system resulting from metals released from coal mine waste in Svalbard (78° N). Water Air & Soil Pollution, 195, 99114.CrossRefGoogle Scholar
Bardgett, R. D., Van der Wal, R., Jónsdóttir, I. S., Quirk, H., & Dutton, S. (2007). Temporal variability in plant and soil nitrogen pools in a high-Arctic ecosystem. Soil Biology and Biochemistry, 39, 21292137.CrossRefGoogle Scholar
Beumer, L. T., Varpe, Ø., & Hansen, B. B. (2017). Cratering behaviour and faecal C:N ratio in relation to seasonal snowpack characteristics in a High-Arctic ungulate. Polar Research, 36, 1286121.CrossRefGoogle Scholar
Biasioli, M., Grčman, H., Krajl, T., Madrid, F., Diaz-Barrientos, E., & Ajmone-Marsan, F. (2007). Potentially toxic elements contamination in urban soils: A comparison of three European cities. Journal of Environmental Quality, 36, 7079.CrossRefGoogle ScholarPubMed
Birke, M., & Rauch, U. (2000). Urban geochemistry: Investigations in the Berlin metropolitan area. Environmental Geochemistry and Health, 22, 233248.CrossRefGoogle Scholar
Borden, P. W., Ping, C. L., McCarthy, P. J., & Naidu, S. (2010). Clay mineralogy in Arctic tundra Gelisols, Northern Alaska. Soil Science Society of America Journal, 74, 580592.CrossRefGoogle Scholar
Brady, N. C., & Weil, R. R. (2004). The nature and properties of soils. Delhi, India: Pearson Education, Inc.Google Scholar
Bryant, I. D. (1982). Loess deposits in lower Adventdalen, Spitsbergen. Polar Research, 2, 93103.CrossRefGoogle Scholar
Charlesworth, S., Everett, M., McCarthy, R., Ordonez, A., & De Miguell, E. (2003). A comparative study of heavy metal concentration and distribution in deposited street dusts in a large and a small urban area: Birmingham and Coventry, West Midlands, UK. Environment International, 29, 563573.CrossRefGoogle Scholar
Chen, X., Xia, X. H., Zhao, Y., & Zhang, P. (2010). Heavy metals concentrations in roadside soils and correlation with urban traffic in Beijing, China. Journal of Hazardous Materials, 181, 640646.CrossRefGoogle ScholarPubMed
Christiansen, H. H. (2005). Thermal regime of ice-wedge cracking in Adventdalen, Svalbard. Permafrost and Periglacial Processes, 16, 8798.CrossRefGoogle Scholar
Ćmiel, S. R., & Fabiańska, M. J. (2004). Geochemical and petrographic properties of some Spitsbergen coals and dispersed organic matter. International Journal of Coal Geology, 57, 7797.CrossRefGoogle Scholar
Dai, X. Y., Ping, C.-L., & Michaelson, G. J., (2002). Characterizing soil organic matter in Arctic tundra soils by different analytical approaches. Organic Geochemistry, 33, 407419.CrossRefGoogle Scholar
Dallman, W. K., Kjærnet, T., & Nøttvedt, A. (2001). Geological map of Svalbard 1:100 000. Sheet C9Q Adventdalen. Temakart No. 31/32. Tromsø: Norwegian Polar Institute.Google Scholar
Dziadowiec, H., Gonet, S., & Plichta, W. (1994). Properties of humic acids of Arctic tundra soils in Spitsbergen. Polish Polar Research, 15(1--2), 7181.Google Scholar
Eckerstorfer, M., & Christiansen, H. H. (2011). Topographical and meteorological control on snow avalanching in the Longyearbyen area, central Svalbard 2006-2009. Geomorphology, 134, 186196.CrossRefGoogle Scholar
Etzelmüller, B., & Sollid, J. L. (1991). The role of weathering and pedological processes for the development of sorted circles on Kvadehuksletta, Svalbard; A short report. Polar Research, 9(2), 181191.CrossRefGoogle Scholar
Flem, B., Eggen, O. A., Torgersen, E., Kongsvik, M. K., & Ottesen, R. T. (2018). Urban geochemistry in Kristiansand, Norway. Journal of Geochemical Exploration, 187, 2133.CrossRefGoogle Scholar
Førland, E. J., Benestad, R. E., Flatøy, F., Hanssen-Bauer, I., Haugen, J. E., Isaksen, K., Sorteberg, A., & Ådlandsvik, B. (2009). Climate development in North Norway and the Svalbard region during 1900–2100. Tromsø: Norwegian Polar Institute.Google Scholar
Gee, G. W., & Bauder, J. W. (1986). Particle-size analysis. In Klute, A. (Ed.), Methods of soil analysis. Part 1. Physical and mineralogical methods (Vol. 9, 2nd ed., pp. 427445) [Agronomy monograph]. Madison, Wisconsin: ASA-SSSA.Google Scholar
Gentsch, N., Mikutta, R., Shibistova, O., Wild, B., Schnecker, J., Richter, A., … Guggenberger, G. (2015). Properties and bioavailability of particulate and mineral associated organic matter in Arctic permafrost soils, Lower Kolyma region, Russia. European Journal of Soil Science, 66, 722734.CrossRefGoogle Scholar
Gong, M., Wu, L., Bi, X. Y., Ren, L. M., Wang, L., Ma, Z. D., …, Li, Z. G. (2010). Assessing heavy-metal contamination and sources by GIS-based approach and multivariate analysis of urban-rural topsoils in Wuhan, central China. Environmental Geochemistry and Health, 32(1), 5972.CrossRefGoogle Scholar
Gulińska, J., Rachlewicz, G., Szczuciński, W., Barałkiewicz, D., Kózka, M., Bulska, E., & Burzyk, M. (2003). Soil contamination in high Arctic areas of human impact, central Spitsbergen, Svalbard. Polish Journal of Environmental Studies, 12(6), 701707.Google Scholar
Guney, M., Onay, T. T., & Copty, N. K. (2010). Impact of overland traffic on heavy metal levels in highway dust and soils of Istanbul, Turkey. Environmental Monitoring and Assessment, 164, 101110.CrossRefGoogle ScholarPubMed
Haldar, S. K., & Tišljar, J. (2014). Introduction to mineralogy and petrology. The Netherlands: Elsevier.Google Scholar
Hanssen-Bauer, I., Kristensen, M., & Steffensen, E. L. (1990). The climate of Spitsbergen. Klima: Norwegian Meteorological Institute Report 39/40. Oslo: Norwegian Meteorological Institute.Google Scholar
Imperato, M., Adamo, P., Naimoa, D., Arienzo, M., Stanzione, D., & Violante, P. (2003). Spatial distribution of heavy metals in urban soils of Naples city (Italy). Environmental Pollution, 124, 247256.CrossRefGoogle Scholar
Johansen, B., & Tømmervik, H. (2014). The relationship between phytomass, NDVI and vegetation communities on Svalbard. International Journal of Applied Earth Observation and Geoinformation, 27, 2030.Google Scholar
Johansen, B. E., Tømmervik, H., & Karlsen, S. R. (2012). Vegetation mapping of Svalbard utilizing Landsat TM/ETM+ data. Polar Record, 48, 4763.CrossRefGoogle Scholar
Kabała, C., & Zapart, J. (2009). Recent, relic and buried soils in the forefield of Werenskiold Glacier, SW Spitsbergen. Polish Polar Research, 30(2), 161178.Google Scholar
Kabala, C., & Zapart, J. (2012). Initial soil development and carbon accumulation on moraines of the rapidly retreating Werenskiold Glacier, SW Spitsbergen, Svalbard archipelago. Geoderma, 175-176, 920.CrossRefGoogle Scholar
Klimowicz, Z., Melke, J., & Uziak, S. (1997). Peat soils in the Bellsund region, Spitsbergen. Polish Polar Research, 18(1), 2539.Google Scholar
Klimowicz, Z., & Uziak, S. (1996a). Soil and vegetation conditions in small valleys at southern coast of Bellsund, Spitsbergen. Polish Polar Research, 17, 93106.Google Scholar
Klimowicz, Z., & Uziak, S. (1996b). Arctic soil properties associated with micro-relief forms in the Bellsund region (Spitsbergen). Catena, 28, 135149.CrossRefGoogle Scholar
Lee, C. S., Li, X., Shi, W., Cheung, S. C., & Thornton, I. (2006). Metal contamination in urban, suburban, and country park soils of Hong Kong: A study based on GIS and multivariate statistics. Science of the Total Environment, 356, 4561.CrossRefGoogle ScholarPubMed
Lewińska-Preis, L., Fabiańska, M. J., Ćmiel, S., & Kita, A. (2009). Geochemical distribution of trace elements in Kaffioyra and Longyearbyen coals, Spitsbergen, Norway. International Journal of Coal Geology, 80, 211223.CrossRefGoogle Scholar
Lorenz, K., & Lal, R. (2009). Biogeochemical C and N cycles in urban soils. Environment International, 35, 18.CrossRefGoogle Scholar
Lu, G., & Wong, D. (2008). An adaptive inverse-distance weighting spatial interpolation technique. Computers and Geosciences, 34(9), 10441056.CrossRefGoogle Scholar
Luo, X. S., Yu, S., Zhu, Y. G., & Li, H. D. (2012). Trace metal contamination in urban soils of China. Science of the Total Environment, 421–422, 1730.CrossRefGoogle ScholarPubMed
Madan, N. J., Deacon, L. J., & Robinson, C. H. (2007). Greater nitrogen and/or phosphorus availability increase plant species’ cover and diversity at a High Arctic polar semidesert. Polar Biology, 30, 559570.CrossRefGoogle Scholar
Mann, D. H., Sletten, R. S., & Ugolini, F. C. (1986). Soil development at Kongsfjord, Spitsbergen. Polar Research, 4, 116.CrossRefGoogle Scholar
Manta, D. S., Angelone, M., Bellanca, A., Neri, R., & Sprovieri, M. (2002). Heavy metals in urban soils: A case study from the city of Palermo (Sicily), Italy. Science of the Total Environment, 300, 229243.CrossRefGoogle ScholarPubMed
Mao, Y., Sang, S., Liu, S., & Jia, J. (2014). Spatial distribution of pH and organic matter in urban soils and its implications on site-specific land uses in Xuzhou, China. Comptes Rendus Biologies, 337, 332337.CrossRefGoogle ScholarPubMed
Massas, I., Ehaliotis, C., Kalivas, D., & Panagopoulou, G. (2010). Concentrations and availability indicators of soil heavy metals: The case of children’s playgrounds in the city of Athens (Greece). Water Air & Soil Pollution, 212, 5163.CrossRefGoogle Scholar
Melke, J., & Chodorowski, J. (2006). Formation of arctic soils in Chamberlindalen, Bellsund, Spitsbergen. Polish Polar Research, 27(2), 119132.Google Scholar
Melke, J., & Uziak, S. (1989). Dynamics of moisture, redox potential and oxygen diffusion rate of some soils from Calypsostranda, Spitsbergen. Polish Polar Research, 10(1), 91104.Google Scholar
Migała, K., Wojtuń, B., Szymański, W., & Muskała, P. (2014). Soil moisture and temperature variation under different types of tundra vegetation during the growing season: A case study from the Fuglebekken catchment, SW Spitsbergen. Catena, 116, 1018.CrossRefGoogle Scholar
Mihailović, A., Budinski-Petković, L. J., Popov, S., Ninkov, J., Vasin, J., Ralević, N. M., & Vučinić Vasić, M. (2015). Spatial distribution of metals in urban soil of Novi Sad, Serbia: GIS based approach. Journal of Geochemical Exploration, 150, 104114.CrossRefGoogle Scholar
Morton-Bermea, O., HernandeZ-Alvarez, E., Gonzalez-Hernandez, G., Romero, F., Lozano, R., & Beramendi-Orosco, L. E. (2009). Assessment of heavy metal pollution in urban topsoils from the metropolitan area of Mexico City. Journal of Geochemical Exploration, 101, 218224.CrossRefGoogle Scholar
Palmtag, J., Ramage, J., Hugelius, G., Gentsch, N., Lashchinskiy, N., Richter, A., & Kuhry, P. (2016). Controls on the storage of organic carbon in permafrost soil in northern Siberia. European Journal of Soil Science, 67, 478491.CrossRefGoogle Scholar
Prestø, T., Lüth, M., & Hassel, K. (2014). Bryophytes of the Longyearbyen area. NTNU Vitenskapsmuseet naturhistorisk notat 2014-10, 1–68.Google Scholar
Rodriguez-Salazar, M. T., Morton-Bermea, O., Hernandez-Alvarez, E., Lozano, R., & Tapia-Cruz, V. (2011). The study of metal contamination in urban topsoils of Mexico City using GIS. Environmental Earth Sciences, 62, 899905.CrossRefGoogle Scholar
Sjögersten, S., Van der Wal, R., & Woodin, S. J. (2006). Small-scale hydrological variation determines landscape CO2 fluxes in the high Arctic. Biogeochemistry, 80, 205216.CrossRefGoogle Scholar
Skiba, S., Drewnik, M., & Kacprzak, A. (2002). Soils of the western coast of Sørkappland. In Ziaja, W., and Skiba, S. (Eds.) Sørkappland landscape structure and functioning (Spitsbergen, Svalbard) (pp. 5186). Kraków: Jagiellonian University Press.Google Scholar
Sollito, D., Romic, M., Castrignano, S., Romic, D., & Bakic, H. (2010). Assessing heavy metal contamination in soils of the Zagreb region (Northwest Croatia) using multivariate geostatistics. Catena, 80, 182194.CrossRefGoogle Scholar
Środoń, J. (2006). Identification and quantitative analysis of clay minerals. In Bergaya, F., Theng, B.K.G., and Lagaly, G. (Eds.), Handbook of clay science (pp. 765787). Amsterdam, The Netherlands: Elsevier.CrossRefGoogle Scholar
Szymański, W., Siwek, J., Waścińska, J., & Wojtuń, B. (2016a). Texture and geochemistry of surface horizons of Arctic soils from a non-glaciated catchment, SW Spitsbergen. Polish Polar Research, 37(3), 361377.CrossRefGoogle Scholar
Szymański, W., Skiba, S., & Wojtuń, B. (2013). Distribution, genesis, and properties of Arctic soils: A case study from the Fuglebekken catchment, Spitsbergen. Polish Polar Research, 34(3), 289304.CrossRefGoogle Scholar
Szymański, W., Skiba, M., Wojtuń, B., & Drewnik, M. (2015). Soil properties, micromorphology, and mineralogy of cryosols from sorted and unsorted patterned grounds in the Hornsund area, SW Spitsbergen. Geoderma, 253-254, 111.CrossRefGoogle Scholar
Szymański, W., Wojtuń, B., Stolarczyk, M., Siwek, J., & Waścińska, J. (2016b). Organic carbon and nutrients (N, P) in surface soil horizons of Arctic soils from a non-glaciated catchment, SW Spitsbergen. Polish Polar Research, 37(1), 4966.CrossRefGoogle Scholar
Thomas, G. W. (1996). Soil pH and soil acidity. In Sparks, D. L., et al. (Eds.), Methods of soil analysis. Part 3. Chemical methods, SSSA Book Series (Vol. 5, pp. 475490). Madison, Wisconsin: SSSA and ASA.Google Scholar
Watanabe, T., Matsuoka, N., Christiansen, H. H., & Cable, S. (2016). Soil physical and environmental conditions controlling patterned-ground variability at a continuous permafrost site, Svalbard. Permafrost and Periglacial Processes, 28(2), 433445.CrossRefGoogle Scholar
White, D. M., Garland, D. S., Dai, X., & Ping, C. L. (2002). Fingerprinting soil organic matter in the Arctic to help predict CO2 flux. Cold Regions Science and Technology, 35, 185194.CrossRefGoogle Scholar
Wilson, M. J. (2004). Weathering of the primary rock-forming minerals: Processes, products and rates. Clay Minerals, 39, 233266.CrossRefGoogle Scholar
Ziółek, M., & Melke, J. (2014). The impact of seabirds on the content of various forms of phosphorus in organic soils of the Bellsund coast, western Spitsbergen. Polar Research, 33, 19986.CrossRefGoogle Scholar
Zwolicki, A., Zmudczyńska-Skarbek, K. M., Iliszko, L., & Stempniewicz, L. (2013). Guano deposition and nutrient enrichment in the vicinity of planktivorous and piscivorous seabird colonies in Spitsbergen. Polar Biology, 36, 363372.CrossRefGoogle Scholar
Zwolicki, A., Zmudczyńska-Skarbek, K., Matuła, J., Wojtuń, B., & Stempniewicz, L. (2016). Differential responses of Arctic vegetation to nutrient enrichment by plankton and fish-eating colonial seabirds in Spitsbergen. Frontiers in Plant Science, 7, 1959.CrossRefGoogle ScholarPubMed