Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-23T05:09:32.571Z Has data issue: false hasContentIssue false

Benthic community descriptions at underwater peaks in McMurdo Sound, Antarctica

Published online by Cambridge University Press:  08 March 2022

Stacy Kim*
Affiliation:
Moss Landing Marine Labs, 8272 Moss Landing Road, Moss Landing, CA95062, USA
François Cazenave
Affiliation:
Monterey Bay Aquarium Research Institute, 700 Sandholdt Road, Moss Landing, CA95039, USA
*
Author for correspondence: Stacy Kim, Email: [email protected]

Abstract

In McMurdo Sound, Antarctica, fine-scale bathymetry is poorly defined, and benthic communities at water depths over 30 m have not been well described. We describe the benthic communities on two previously unknown bathymetric highs, sampled in 2012 and 2014, using scuba divers, a remotely operated vehicle, and a specially designed time-lapse camera system (SeeStar). One site (Mystery Peak) was capped by a dense thicket of the sponge Homaxinella balfourensis, a temporally variable community that likely formed in response to iceberg disturbance. Below the H. balfourensis cap (at 40 m) and at the second site (Tongue Peak, 70 m), the communities conformed to a known ecological pattern driven by food availability from benthic diatoms. Overall, mixed hydroids and bryozoans were the dominant organisms, and at greater depths the sponge Rosella podagrosa also became abundant. Over time, there were only minor changes in these communities on isolated bathymetric highs. Ice is a physical factor that interacts with depth and influences benthic communities through disturbance by icebergs and anchor ice, and through food supply by sea ice coverage. The SeeStar time-lapse camera system performed exceptionally and opens up opportunities for new winter observations in the Antarctic.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arrigo, K. R., & van Dijken, G. L. (2003). Impact of iceberg C-19 on Ross Sea primary production. Geophysical Research Letters, 30(16).CrossRefGoogle Scholar
Bowden, D. A., Schiaparelli, S., Clark, M. R., & Rickard, G. J. (2011). A lost world? Archaic crinoid-dominated assemblages on an Antarctic seamount. Deep Sea Research Part II: Topical Studies in Oceanography, 58(1–2), 119127.CrossRefGoogle Scholar
Brueggeman, P. (1998). Underwater Field Guide to Ross Island & McMurdo Sound, Antarctica. www.peterbrueggeman.com/nsf/fguide/ Google Scholar
Brueggeman, P. (2003). Diving under Antarctic ice: a history. Scripps Institution of Oceanography Technical Report, 41.Google Scholar
Cattaneo-Vietti, R., Chiantore, M., Gambi, M. C., Albertelli, G., Cormaci, M., & Di Geronimo, I. (2000). Spatial and vertical distribution of benthic littoral communities in Terra Nova Bay. In F. M. Faranda, L. Guglielmo, & A. Ianora A. (Eds.), Ross Sea Ecology (pp. 503514). Berlin: Springer.CrossRefGoogle Scholar
Cazenave, F., Kecy, C., Risi, M., & Haddock, S. H. (2014). SeeStar: a low-cost, modular and open-source camera system for subsea observations. 2014 Oceans-St. John’s, IEEE, 1–7.CrossRefGoogle Scholar
Cazenave, F., Zook, R., Carroll, D., Flagg, M., & Kim, S. (2011). Development of the ROV SCINI and deployment in McMurdo Sound, Antarctica. Journal of Ocean Technology, 6(3), 3958.Google Scholar
Conlan, K. E., Kim, S. L., Thurber, A. R., & Hendrycks, E. (2010). Benthic changes at McMurdo Station, Antarctica following local sewage treatment and regional iceberg-mediated productivity decline. Marine Pollution Bulletin, 60(3), 419432.CrossRefGoogle ScholarPubMed
Connell, J. H. (1975). Some mechanisms producing structure in natural communities: a model and evidence from field experiments. In Cody, M. L., & Diamond, J. M. (Eds.), Ecology and Evolution of Communities (pp. 460490). Cambridge, MA: Belknap Press of Harvard University.Google Scholar
Cummings, V. J., Hewitt, J. E., Thrush, S. F., Marriott, P. M., Halliday, N. J., & Norkko, A. (2018). Linking Ross Sea coastal benthic communities to environmental conditions: documenting baselines in a spatially variable and changing world. Frontiers in Marine Science, 5, 232.CrossRefGoogle Scholar
Dayton, P. K. (1989). Interdecadal variation in an Antarctic sponge and its predators from oceanographic climate shifts. Science, 245(4925), 14841486.CrossRefGoogle Scholar
Dayton, P. K., Jarrell, S. C., Kim, S., Parnell, P., Thrush, S. F., Hammerstrom, K., & Leichter, J. J. (2019). Benthic responses to an Antarctic regime shift: food particle size and recruitment biology. Ecological Applications, 29(1), 01823.CrossRefGoogle Scholar
Dayton, P. K., Robilliard, G. A., & Paine, R. T. (1970). Benthic faunal zonation as a result of anchor ice at McMurdo Sound, Antarctica. Antarctic Ecology, 1, 244258.Google Scholar
Dayton, P., Jarrell, S., Kim, S., Thrush, S., Hammerstrom, K., Slattery, M., & Parnell, E. (2016). Surprising episodic recruitment and growth of Antarctic sponges: implications for ecological resilience. Journal of Experimental Marine Biology and Ecology, 482, 3855.CrossRefGoogle Scholar
Dearborn, J. H. (1965). Ecological and faunistic investigations of the marine benthos at McMurdo Sound, Antarctica. Doctoral thesis, Department of Biological Sciences, Stanford University.Google Scholar
Dearborn, J. H. (1967). Stanford University invertebrate studies in the Ross Sea 1958–61: general account and station list. New Zealand Department of Scientific and Industrial Research Bulletin, 176, 3147.Google Scholar
Dorschel, B., Gutt, J., Piepenburg, D., Schröder, M., & Arndt, J. E. (2014). The influence of the geomorphological and sedimentological settings on the distribution of epibenthic assemblages on a flat topped hill on the over-deepened shelf of the western Weddell Sea (Southern Ocean). Biogeosciences, 11(14), 37973817.CrossRefGoogle Scholar
Fratt, D. B., & Dearborn, J. H. (1984). Feeding biology of the Antarctic brittle star Ophionotus victoriae (Echinodermata: Ophiuroidea). Polar Biology, 3(3), 127139.CrossRefGoogle Scholar
Gibson, R. (1983). Antarctic nemerteans: the anatomy, distribution and biology of Parborlasia corrugatus (McIntosh, 1876) (Heteronemertea, Lineidae). Biology of the Antarctic Seas XIV, 39, 289316.CrossRefGoogle Scholar
Gili, J. M., & Coma, R. (1998). Benthic suspension feeders: their paramount role in littoral marine food webs. Trends in Ecology & Evolution, 13(8), 316321.CrossRefGoogle ScholarPubMed
Gili, J., Coma, R., Orejas, C., Lopez-Gonzalez, P. J., & Zabala, M. (2001). Are Antarctic suspension-feeding communities different from those elsewhere in the world? Polar Biology 24, 473485.CrossRefGoogle Scholar
Gutt, J. (2001). On the direct impact of ice on marine benthic communities, a review. Polar Biology, 24, 553563.CrossRefGoogle Scholar
Gutt, J., & Starmans, A. (2002). Quantification of iceberg impact and benthic recolonisation patterns in the Weddell Sea (Antarctica). In W. E. Arntz, & A. Clarke (Eds.), Ecological Studies in the Antarctic Sea Ice Zone (pp. 210214). Berlin: Springer.CrossRefGoogle Scholar
Kim, S., & Collins, C. A. (2021). Iceberg disturbance to benthic communities in McMurdo Sound, Antarctica. Polar Record, 57, e11.CrossRefGoogle Scholar
Kim, S. L., Thurber, A., Hammerstrom, K., & Conlan, K. (2007). Seastar response to organic enrichment in an oligotrophic polar habitat. Journal of Experimental Marine Biology and Ecology, 346(1–2), 6675.CrossRefGoogle Scholar
Kyle, P. R. (1976). Geology, mineralogy and geochemistry of the late Cenozoic McMurdo volcanic group, Victoria Land, Antarctica. Doctoral thesis, Deptartment of Geology, Victoria University of Wellington.Google Scholar
Menge, B. A. (2000). Top-down and bottom-up community regulation in marine rocky intertidal habitats. Journal of Experimental Marine Biology and Ecology, 250(1–2), 257289.CrossRefGoogle ScholarPubMed
Mincks, S. L., Smith, C. R., Jeffreys, R. M., & Sumida, P. Y. (2008). Trophic structure on the West Antarctic Peninsula shelf: detritivory and benthic inertia revealed by δ13C and δ15N analysis. Deep Sea Research Part II: Topical Studies in Oceanography, 55(22–23), 25022514.CrossRefGoogle Scholar
Moran, A. L., Woods, H. A., Shishido, C. M., Lane, S. J., & Tobalske, B. W. (2018). Predatory behavior of giant Antarctic sea spiders (Colossendeis) in nearshore environments. Invertebrate Biology, 137(2), 116123.CrossRefGoogle Scholar
Mullineaux, L. S., & Mills, S. W. (1997). A test of the larval retention hypothesis in seamount-generated flows. Deep-Sea Research, 44, 745770.CrossRefGoogle Scholar
Nghiem, S. V., Rigor, I. G., Clemente-Colón, P., Neumann, G., & Li, P. P. (2016). Geophysical constraints on the Antarctic sea ice cover. Remote Sensing of Environment, 181, 281292.CrossRefGoogle Scholar
Parker, T., & Tunnicliffe, V. (1994). Dispersal strategies of the biota on an oceanic seamount: implications for ecology and biogeography. Biological Bulletin 187, 336345.CrossRefGoogle Scholar
Pearse, J. S. (2013). Odontaster validus . In Lawrence, J. M., ed., Starfish: Biology and Ecology of the Asteroidea (pp. 124125). Baltimore, MD: John Hopkins University Press.Google Scholar
Raguá-Gil, J. M., Gutt, J., Clarke, A., & Arntz, W. E. (2004). Antarctic shallow-water mega-epibenthos: shaped by circumpolar dispersion or local conditions? Marine Biology, 144(5), 829839.CrossRefGoogle Scholar
Rogers, A. D. (1994). The biology of seamounts. Advances in Marine Biology 30, 305350.CrossRefGoogle Scholar
Rogers, A. D. (2018). The biology of seamounts: 25 years on. Advances in Marine Biology, 79, 137224.CrossRefGoogle Scholar
Samadi, S., Schlacher, T., & Richer de Forges, B. (2007). Seamount benthos. In Pitcher, T. J., Morato, T., Hart, P. J., Clark, M. R., Haggan, N., & Santos, R. S. (Eds.), Seamounts: Ecology, Fisheries & Conservation (pp. 117140). Oxford, UK: Blackwell Science.CrossRefGoogle Scholar
Slattery, M. A. R. C., & McClintock, J. B. (1997). An overview of the population biology and chemical ecology of three species of Antarctic soft corals. Antarctic Communities. Species, structure and Survival. Pub. CUP, 309–315.Google Scholar
Stevens, C. L., McPhee, M. G., Forrest, A. L., Leonard, G. H., Stanton, T., & Haskell, T. G. (2014). The influence of an Antarctic glacier tongue on near-field ocean circulation and mixing. Journal of Geophysical Research: Oceans, 119(4), 23442362.CrossRefGoogle Scholar
Szuta, D. (2017). Community Structure and Zonation of Antarctic Benthic Invertebrates: Using a Remotely Operated Vehicle under Ice to Define Biological Patterns. Masters thesis, San Jose State University.Google Scholar
Thatje, S. (2012). Effects of capability for dispersal on the evolution of diversity in Antarctic benthos. Integrative and Comparative Biology 52, 470482.CrossRefGoogle ScholarPubMed
Tinto, K. J., Padman, L., Siddoway, C. S., Springer, S. R., Fricker, H. A., Das, I., … Siegfried, M. R. (2019). Ross Ice Shelf response to climate driven by the tectonic imprint on seafloor bathymetry. Nature Geoscience, 12(6), 441449.CrossRefGoogle Scholar
Wägele, H. (1989). Diet of some Antarctic nudibranchs (Gastropoda, Opisthobranchia, Nudibranchia). Marine Biology, 100(4), 439441.CrossRefGoogle Scholar
Wilson, R. R., & Kaufmann, R. S. (1987). Seamount biota and biogeography. Geophysical Monographs 43, 355377.Google Scholar
Wright, A. C. (1980). Landforms of McMurdo volcanic group, southern foothills of royal society range, Antarctica. New Zealand Journal of Geology and Geophysics, 23(5–6), 605613.CrossRefGoogle Scholar