Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-25T02:51:54.943Z Has data issue: false hasContentIssue false

Antarctic climate change and the environment: an update

Published online by Cambridge University Press:  18 April 2013

John Turner
Affiliation:
British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET ([email protected])
Nicholas E. Barrand
Affiliation:
British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET ([email protected])
Thomas J. Bracegirdle
Affiliation:
British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET ([email protected])
Peter Convey
Affiliation:
British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET ([email protected])
Dominic A. Hodgson
Affiliation:
British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET ([email protected])
Martin Jarvis
Affiliation:
British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET ([email protected])
Adrian Jenkins
Affiliation:
British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET ([email protected])
Gareth Marshall
Affiliation:
British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET ([email protected])
Michael P. Meredith
Affiliation:
British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET ([email protected])
Howard Roscoe
Affiliation:
British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET ([email protected])
Jon Shanklin
Affiliation:
British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET ([email protected])
John French
Affiliation:
Australian Antarctic Division, 203 Channel Highway, Kingston TAS 7050, Australia
Hugues Goosse
Affiliation:
Université Catholique de Louvain, Place de l'Université 1, 1348 Louvain-La-Neuve, Belgium
Mauro Guglielmin
Affiliation:
The University of Insubria, Via Ravasi, 2 - 21100 Varese, Italy
Julian Gutt
Affiliation:
Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, P.O. Box 12 01 61, 27515 Bremerhaven, Germany
Stan Jacobs
Affiliation:
Columbia University, 2960 Broadway, New York, NY 10027, USA
Marlon C. Kennicutt II
Affiliation:
Texas A&M University, College Station, TX 77843-1342, USA
Valerie Masson-Delmotte
Affiliation:
LSCE, Bat 701, L'Orme des Merisiers, CEA Saclay 91 191 Gif-sur-Yvette cédex, France
Paul Mayewski
Affiliation:
Climate Change Institute, University of Maine, Orono, Maine, USA
Francisco Navarro
Affiliation:
Technical University of Madrid, Av Ramiro de Maeztu, 7, 28040 Madrid, Spain
Sharon Robinson
Affiliation:
Institute for Conservation Biology and Environmental Management, Department of Biological Sciences, University of Wollongong, NSW 2522, Australia
Ted Scambos
Affiliation:
US National Snow and Ice Data Center, 1540 30th Street Boulder, CO 80303, USA
Mike Sparrow
Affiliation:
Scott Polar Research Institute, University of Cambridge, Lensfield Road, Cambridge, CB2 1ER
Colin Summerhayes
Affiliation:
Scott Polar Research Institute, University of Cambridge, Lensfield Road, Cambridge, CB2 1ER
Kevin Speer
Affiliation:
Florida State University, 790 E Broward Blvd, Fort Lauderdale, FL 33301, USA
Alexander Klepikov
Affiliation:
Arctic and Antarctic Research Institute, 38 Bering Street, Saint Petersburg, 199397Russia

Abstract

We present an update of the ‘key points’ from the Antarctic Climate Change and the Environment (ACCE) report that was published by the Scientific Committee on Antarctic Research (SCAR) in 2009. We summarise subsequent advances in knowledge concerning how the climates of the Antarctic and Southern Ocean have changed in the past, how they might change in the future, and examine the associated impacts on the marine and terrestrial biota. We also incorporate relevant material presented by SCAR to the Antarctic Treaty Consultative Meetings, and make use of emerging results that will form part of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abram, N.J., Thomas, E.R., McConnell, J.R., Mulvaney, R., Bracegirdle, T.J., Sime, L. C. and Aristarain, A.J.. 2010. Ice core evidence for a 20th century decline of sea ice in the Bellingshausen Sea, Antarctica. Journal of Geophysical Research-Atmospheres 115: DOI: 10.1029/2010JD014644.Google Scholar
Agnew, D.J., Marlow, T.R., Lorenzen, K., Pompert, J., Wakeford, R.C. and Tingley, G.A.. 2003. Influence of Drake Passage oceanography on the parasitic infection of individual year-classes of southern blue whiting Micromesistius australis. Marine Ecology-Progress Series 254: 281291.CrossRefGoogle Scholar
Ainley, D., Russell, J., Jenouvrier, S., Woehler, E., Lyver, P. O., Fraser, W. R. and Kooyman, G.L.. 2010. Antarctic penguin response to habitat change as Earth's troposphere reaches 2 degrees C above preindustrial levels. Ecological Monographs 80[1]: 4966.Google Scholar
Allen, C.S., Pike, J., and Pudsey, C.J.. 2011. Last glacial-interglacial sea-ice cover in the SW Atlantic and its potential role in global deglaciation. Quaternary Science Reviews 30 (19–20): 24462458.Google Scholar
Arcone, S., Jacobel, R., and Hamilton, G.H.. 2012. Unconformable stratigraphy in East Antarctica, Part 1: firn ultrasets and metamorphic growth, and model evidence for intensified accumulation. Journal of Glaciology in press.Google Scholar
Aronson, R.B., Thatje, S., McClintock, J.B., and Hughes, K.A.. 2011. Anthropogenic impacts on marine ecosystems in Antarctica. Year in ecology and conservation biology. Annals of the New York Academy of Sciences 1223: 82107.CrossRefGoogle Scholar
Arrigo, K.R. and Thomas, D.N.. 2004. Large-scale importance of sea ice biology in the Southern Ocean. Antarctic Science 16: 471486. DOI:10.1017/S0954102004002263.Google Scholar
Arrigo, K.R., van Dijken, G. and Long, M.. 2008a. Coastal Southern Ocean: a strong anthropogenic CO2 sink. Geophysical Research Letters 35 (21): DOI: 10.1029/2008GL035624.CrossRefGoogle Scholar
Arrigo, K.R., van Dijken, G.L. and Bushinsky, S.. 2008b. Primary production in the Southern Ocean, 1997–2006. Journal of Geophysical Research-Oceans 113 (C8): DOI:10.1029/2007JC004551.Google Scholar
Asher, E.C., Dacey, J.W.H., Mills, M.M., Arrigo, K.R. and Tortell, P.D.. 2011. High concentrations and turnover rates of DMS, DMSP and DMSO in Antarctic sea ice. Geophysical Research Letters 38: DOI: 10.1029/2011GL049712.Google Scholar
Ballare, C.L., Caldwell, M.M., Flint, S.D., Robinson, S.A. and Bornman, J.F.. 2011. Effects of solar ultraviolet radiation on terrestrial ecosystems. Patterns, mechanisms, and interactions with climate change. Photochemical and Photobiological Sciences 10: 226241.CrossRefGoogle ScholarPubMed
Barbraud, C., Gavrilo, M., Mizin, Y. and Weimerskirch, H.. 2011a. Comparison of emperor penguin declines between Pointe Geologie and Haswell Island over the past 50 years. Antarctic Sciences 23 (5): 461468.CrossRefGoogle Scholar
Barbraud, C., Rivalan, P., Inchausti, P., Nevoux, M., Rolland, V., and Weimerskirch, H.. 2011b:. Contrasted demographic responses facing future climate change in Southern Ocean seabirds. Journal of Animal Ecology 80[1]: 89100.CrossRefGoogle ScholarPubMed
Barnes, D.K.A. and Hillenbrand, C.D.. 2010. Faunal evidence for a late quaternary trans–Antarctic seaway. Global Change Biology 16 (12): 32973303.Google Scholar
Barnes, D.K.A., Peck, L.S. and Morley, S.A.. 2010. Ecological relevance of laboratory determined temperature limits: colonization potential, biogeography and resilience of Antarctic invertebrates to environmental change. Global Change Biology 16 (11): 31643169.Google Scholar
Barnes, D.K.A. and Souster, T.. 2011. Reduced survival of Antarctic benthos linked to climate–induced iceberg scouring. Nature Climate Change 1 (7): 365368.CrossRefGoogle Scholar
Beers, J.M. and Sidell, B.D.. 2011. Thermal tolerance of Antarctic notothenioid fishes correlates with level of circulating hemoglobin. Physiological and Biochemical Zoology 84 (4): 353362.CrossRefGoogle ScholarPubMed
Beig, G., Scheer, J., Mlynczak, M.G. and Keckhut, P.. 2008. Overview of the temperature response in the mesosphere and lower thermosphere to solar activity. Reviews of Geophysics 46: DOI: 10.1029/2007RG000236.Google Scholar
Bertler, N.A.N., Mayewski, P.A. and Carter, L.. 2011. Cold conditions in Antarctica during the Little Ice Age – implications for abrupt climate change mechanisms. Earth and Planetary Science Letters 308 (1–2): 4151.Google Scholar
Blunden, J. and Arndt, D.S.. 2012. State of the climate in 2011. Bulletin of the American Meteorological Society 93: S1S282.Google Scholar
Boden, T.A., Marland, G. and Andres, R.J.. 2012. Global, regional, and national fossil–fuel CO2 emissions. Oak Ridge, Tenn: US Department of Energy, Carbon Dioxide Information Analysis Center. DOI: 10.3334/CDIAC/00001_V2012.Google Scholar
Boelen, P., Van De Poll, W.H., Van Der Strate, H.J., Neven, I.A., Beardall, J., and Buma, A.G.J.. 2011. Neither elevated nor reduced CO2 affects the photo–physiological performance of the marine Antarctic diatom Chaetoceros brevis. Journal of Experimental Marine Biology and Ecology 406: 38e45.Google Scholar
Böning, C.W., Dispert, A., Visbeck, M., Rintoul, S.R. and Schwarzkopf, F.U.. 2008. The response of the Antarctic Circumpolar Current to recent climate change. Nature Geoscience 1 (12): 864869.CrossRefGoogle Scholar
Bracegirdle, T.J., Connolley, W.M. and Turner, J.. 2008. Antarctic climate change over the twenty first century. Journal of Geophysical Research 113: D03103: DOI:10.1029/2007JD008933.CrossRefGoogle Scholar
Brandt, A. and Gutt, J.. 2011. Biodiversity of a unique environment: the Southern Ocean benthos shaped and threatened by climate change. In: Zachos, F.E. and Habel, J.C. (editors). Biodiversity hotspots. Berlin: Springer: 503526.CrossRefGoogle Scholar
Brey, T., Voigt, M., Jenkins, K. and Ahn, I.Y.. 2011. The bivalve Laternula elliptica at King George Island – A biological recorder of climate forcing in the West Antarctic Peninsula region. Journal of Marine Systems 88 (4): 542552.Google Scholar
Bromwich, D.H., Nicolas, J.P., Monaghan, A.J., Lazzara, M.A., Keller, L.M., Weidner, G.A. and Wilson, A.B.. 2013. Central West Antarctica among the most rapidly warming regions on Earth. Nature Geoscience 6: 139145.CrossRefGoogle Scholar
Burke, A. and Robinson, L.F.. 2012. The Southern Ocean's role in carbon exchange during the last deglaciation. Science 335: 557561.Google Scholar
Cheng, C.H.C., di Prisco, G. and Verde, C.. 2009. Cold–adapted Antarctic fish: the discovery of neuroglobin in the dominant suborder Notothenioidei. Gene 433 (1–2): 100101.Google Scholar
Clarke, L.J., Robinson, S.A., Hua, Q., Ayre, D.J. and Fink, D.. 2012. Radiocarbon bomb spike reveals biological effects of Antarctic climate change. Global Change Biology 18: 301310: DOI:10.1111/j.1365–2486.2011.02560.CrossRefGoogle Scholar
Collins, L.G., Pike, J., Allen, C.S. and Hodgson, D. A.. in press. High resolution reconstruction of Southwest Atlantic sea–ice and its role in the climate changes of marine isotope stages 3 and 2. Paleoceanography: DOI: 10.1029/2011PA002264.Google Scholar
Comeau, S., Gattuso, J.P., Nisumaa, A.M. and Orr, J.. 2012. Impact of aragonite saturation state changes on migratory pteropods. Proceedings of the Royal Society B–Biological Sciences 279 (1729): 732738.Google Scholar
Comiso, J.C., Kwok, R., Martin, S. and Gordon, A.L.. 2011. Variability and trends in sea ice extent and ice production in the Ross Sea, Journal of Geophysical Research 116: doi:10.1029/2010JC006391.Google Scholar
Convey, P., Bindschadler, R., di Prisco, G., Fahrbach, E., Gutt, J., Hodgson, D.A., Mayewski, P.A., Summerhayes, C.P., Turner, J. and The ACCE Consortium. 2009. Review: Antarctic climate change and the environment. Antarctic Science 21: 541563.Google Scholar
Cook, A.J. and Vaughan, D.G.. 2010. Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years. The Cryosphere 4: 7798.CrossRefGoogle Scholar
Cook, A.J., Poncet, S., Cooper, A.P.R., Herbert, D.J. and Christie, D.. 2010. Glacier retreat on South Georgia and implications for the spread of rats. Antarctic Science 22: 255263.Google Scholar
Costa, D.P., Huckstadt, L.A., Crocker, D.E., McDonald, B.I., Goebel, M.E. and Fedak, M.A.. 2010. Approaches to studying climate change and its role on the habitat selection of Antarctic pinnipeds. Integrative and Comparative Biology (doi:10.1093/icb/icq054).Google Scholar
Cubillos, J.C., Wright, S.W., Nash, G., de Salas, M.F., Griffiths, B., Tilbrook, B., Poisson, A. and Hallegraeff, G.M.. 2007. Calcification morphotypes of the coccolithophorid Emiliania huxleyi in the Southern Ocean: changes in 2001 to 2006 compared to historical data. Marine Ecology–Progress Series 348: 4754.CrossRefGoogle Scholar
Cummings, V., Hewitt, J., Van Rooyen, A., Currie, K., Beard, S., Thrush, S., Norkko, J., Barr, N., Heath, P., Halliday, N.J., Sedcole, R., Gomez, A., McGraw, C. and Metcalf, V.. 2011. Ocean acidification at high latitudes: potential effects on functioning of the Antarctic bivalve Laternula elliptica. PLoS ONE 6 (1): e16069 (doi: 10.1371/journal.pone.0016069).Google Scholar
Davies, B.J., Carrivick, J.L., Glasser, N.F., Hambrey, M.J. and Smellie, J.L.. 2012. Variable glacier response to atmospheric warming, Northern Antarctic Peninsula. The Cryosphere 6: 10311048.Google Scholar
De Wever, A., Leliaert, F., Verleyen, E., Vanormelingen, P., Van der Gucht, K., Hodgson, D.A., Sabbe, K., and Vyverman, W.. 2009. Hidden levels of phylodiversity in Antarctic green algae: further evidence for the existence of glacial refugia. Proceedings of the Royal Society B–Biological Sciences 276 (1673): 35913599.Google Scholar
Ding, Q., Steig, E.J., Battisti, D.S. and Kuttel, M.. 2011. Winter warming in West Antarctica caused by central tropical Pacific warming. Nature Geoscience 4: 398403.Google Scholar
Dixon, D.A., Mayewski, P.A., Goodwin, I.D., Marshall, G.J., Freeman, R., Maasch, K.A. and Sneed, S.B.. 2012. An ice–core proxy for northerly air mass incursions into West Antarctica. International Journal of Climatology 32: 14551465.CrossRefGoogle Scholar
Dixon, D.A., Mayewski, P.A., Korotkikh, E., Sneed, S.B., Handley, M.J., Introne, D.S. and Scambos, T.. 2011b. A spatial framework for assessing current conditions and monitoring future change in the chemistry of the Antarctic atmosphere. The Cryosphere 5: 885950.Google Scholar
Doran, P.T., Priscu, J.C., Lyons, W.B., Walsh, J.E., Fountain, A.G., McKnight, D.M., Moorhead, D.L., Virginia, R.A., Wall, D.H., Clow, G.D., Fritsen, C.H., McKay, C.P. and Parsons, A.N.. 2002. Antarctic climate cooling and terrestrial ecosystem response. Nature 415: 517520.Google Scholar
Dupont, S., Lundve, B. and Thorndyke, M.. 2010. Near future ocean acidification increases growth rate of the lecithotrophic larvae and juveniles of the sea star Crossaster papposus. Journal of Experimental Zoology Part B Molecular and Developmental Evolution. 314 (5): 382389.Google Scholar
Ekaykin, A.A., Shibaev, Yu.A., Lipenkov, V.Ya., Salamatin, A.N. and Popov, S.V.. 2011. Glaciological and geophysical investigations along the ice flow–lines passing through the subglacial lake Vostok (in Russian). In: Kotlyakov, V. M. (editor). Contribution of Russia to International Polar Year 2007/2008. Polar Cryosphere and Continental Waters. Moscow: Paulsen: 4869.Google Scholar
Evans, C., Thomson, P.G., Davidson, A.T., Bowie, A.R., van den Enden, R., Witte, H. and Brussaard, C.P.D.. 2011. Potential climate change impacts on microbial distribution and carbon cycling in the Australian Southern Ocean. Deep–Sea Research Part II–Topical Studies in Oceanography 58 (21–22): 21502161.Google Scholar
Fabry, V.J., McClintock, J.B., Mathis, J.T. and Grebmeier, J.M.. 2009. Ocean acidification at high latitudes: the bellweather. Oceanography 22 (4): 160171.Google Scholar
Fogt, R.L. and Bromwich, D.H.. 2006 Decadal variability of the ENSO teleconnection to the high latitude South Pacific governed by coupling with the Southern Annular Mode. Journal of Climate 19: 979997.Google Scholar
Fogt, R.L., Perlwitz, J., Monaghan, A.J., Bromwich, D.H., Jones, J.M. and Marshall, G.J.. 2009. Historical SAM variability 2009. Part II: Twentieth–century variability and trends from reconstructions, observations, and the IPCC AR4 models. Journal of Climate 22: 53465365.CrossRefGoogle Scholar
Franklin, C.E. and Seebacher, F.. 2009. Adapting to climate change. Science 323 (5916): 876.CrossRefGoogle ScholarPubMed
French, W.J.R. and Klekociuk, A.R.. 2011. Long–term trends in Antarctic winter hydroxyl temperatures, Journal of Geophysical Research 116 D00P09: DOI: 10.1029/2011JD015731.Google Scholar
Fretwell, P.T., LaRue, M.A., Morin, P., Kooyman, G.L., Wienecke, B., Ratcliffe, N., Fox, A.J., Fleming, A.H., Porter, C., and Trathan, P.N.. 2012. An emperor penguin population estimate: the first global, synoptic survey of a species from space. PLoS ONE 7 (4): e33751 DOI:10.1371/journal.pone.0033751.CrossRefGoogle ScholarPubMed
Gille, S.T.Warming of the Southern Ocean since the 1950s. 2002. Science 295: 12751277.Google Scholar
Goosse, H., Braida, M., Crosta, X., Mairesse, A., Masson–Delmotte, V., Mathiot, P., Neukom, R., Oeter, H., Philippon, G., Renssen, H., Stenni, B., van Ommen, T. and Verleyen, E.. 2012. Antarctic temperature changes during the last millennium: evaluation of simulations and reconstructions. Quaternary Science Reviews 55: 7590.Google Scholar
Graham, R.M., de Boer, A.M., Bolin, B., Heywood, K.J., Chapman, M.R. and Stevens, D.P.. 2012. Southern Ocean fronts: controlled by wind or topography? Journal of Geophysical Research 117: DOI: 10.1029/2012JC007887.Google Scholar
Gutt, J., Barratt, I., Domack, E., d'Acoz, C.D., Dimmler, W., Gremare, A., Heilmayer, O., Isla, E., Janussen, D., Jorgensen, E., Kock, K.H., Lehnert, L.S., Lopez–Gonzales, P., Langner, S., Linse, K., Manjon–Cabeza, M.E., Meissner, M., Montiel, A., Raes, M., Robert, H., Rose, A., Schepisi, E.S., Saucede, T., Scheidat, M., Schenke, H.W., Seiler, J. and Smith, C.. 2011. Biodiversity change after climate–induced ice–shelf collapse in the Antarctic. Deep–Sea Research Part Ii–Topical Studies in Oceanography 58 (1–2): 7483.Google Scholar
Gutt, J., Hosie, G. and Stoddard, M.. 2010. Life in the world's oceans: diversity, distribution, and abundance. In: McIntyre, A.D. (editor). Marine life in the Antarctic. Oxford: WileyBlackwell: 203220.Google Scholar
Gutt, J., Zurell, D., Bracegirdle, T.J., Cheung, W., Clark, M.S., Convey, P., Danis, B., David, B., De Broyer, C., di Prisco, G., Griffiths, H., Laffont, R., Peck, L.S., Pierrat, B., Riddle, M.J., Saucede, T., Turner, J., Verde, C., Wang, Z. and Grimm, V.. 2012. The use of correlative and dynamic species distribution modelling for ecological predictions in the Antarctic: a cross–disciplinary concept. Polar Research 31: (doi.org/10.3402/polar.v31i0.11091).CrossRefGoogle Scholar
Hassler, B., Daniel, J.S., Johnson, B.J., Solomon, S., and Oltmans, S.J.. 2011. An assessment of changing ozone loss rates at South Pole: twenty–five years of ozonesonde measurements. Journal of Geophysical Research–Atmospheres 116: DOI: 10.1029/2011JD016353.CrossRefGoogle Scholar
Hauquier, F., Ingels, J., Gutt, J., Raes, M. and Vanreusel, A.. 2011. Characterisation of the Nematode community of a low–activity cold seep in the recently ice–shelf free Larsen B area, eastern Antarctic Peninsula. Plos One 6 (7)e22240: DOI: 10.1371/journal.pone.0022240.CrossRefGoogle Scholar
Hellmer, H.H., Kauker, F., Timmermann, R., Determann, J. and Rae, J.. 2012. Twenty–first–century warming of a large Antarctic ice–shelf cavity by a redirected coastal current. Nature 485: 225228.Google Scholar
Hellmer, H.H., Huhn, O., Gomis, D. and Timmermann, T.. 2011. On the freshening of the northwestern Weddell Sea continental shelf, Ocean Science 7: 305316: DOI:10.5194/os–7–305–2011.Google Scholar
Helm, K.P., Bindoff, N.L. and Church, J.A.. 2011. Observed decreases in oxygen content of the global ocean. Geophysical Research Letters 38: L23602: DOI:10.1029/2011GL049513.Google Scholar
Hodgson, D.A. 2011. First synchronous retreat of ice shelves marks a new phase of polar deglaciation. Proceedings of the National Academy of Sciences of the United States of America 108 (47): 1885918860.Google Scholar
Hodgson, D.A., Convey, P., Verleyen, E., Vyverman, W., McIntosh, W., Sands, C.J., Fernandez–Carazo, R., Wilmotte, A., DeWever, A., Peeters, K., Tavernier, I. and Willems, A.. 2010. The limnology and biology of the Dufek Massif, Transantarctic Mountains 82° south. Polar Science 4: 197214.Google Scholar
Hodgson, D. A., Roberts, D., McMinn, A., Verleyen, E., Terry, B., Corbett, C. and Vyverman, W.. 2006. Recent rapid salinity rise in three East Antarctic lakes. Journal of Paleolimnology 36 (4): 385406.Google Scholar
Hogg, A.M., Meredith, M.P., Blundell, J.R. and Wilson, C.. 2008. Eddy heat flux in the Southern Ocean: response to variable wind forcing. Journal of Climate 21: 608620.Google Scholar
Holland, P.R. and Kwok, R.. 2012. Wind–driven trends in Antarctic sea–ice drift. Nature Geoscience 5: 872875.Google Scholar
Hughes, K.A. and Convey, P.. 2012. Determining the native/non–native status of newly discovered terrestrial and freshwater species in Antarctica – current knowledge, methodology and management action. Journal of Environmental Management 93 (1): 5266.Google Scholar
Hunt, B.P.V., Pakhomov, E.A., Hosie, G.W., Siegel, V., Ward, P. and Bernard, K.. 2008. Pteropods in Southern Ocean ecosystems. Progress in Oceanography 78 (3): 193221.Google Scholar
Jacobs, S. S., Giulivi, C.F. and Mele, P.A.. 2002. Freshening of the Ross Sea during the late 20th Century. Science 297: 386389.Google Scholar
Jacobs, S.S., Jenkins, A., Giulivi, C.F. and Dutrieux, P.. 2011. Stronger ocean circulation and increased melting under Pine Island Glacier ice shelf. Nature Geoscience 4 (8): 519523.Google Scholar
Jenkins, A., Dutrieux, P., Jacobs, S.S., McPhail, S.D., Perrett, J.R., Webb, A.T. and White, D.. 2010. Observations beneath Pine Island Glacier in West Antarctica and implications for its retreat. Nature Geoscience 3 (7): 468472.Google Scholar
Kopp, R.E., Simons, F.J., Mitrovica, J.X., Maloof, A.C. and Oppenheimer, M.. 2009. Probabilistic assessment of sea level during the last interglacial stage. Nature 462 (7275): 863867.Google Scholar
Korhonen, H., Carslaw, K.S., Forster, P.M., Mikkonen, S., Gordon, N.D. and Kokkola, H.. 2010. Aerosol climate feedback due to decadal increases in Southern Hemisphere wind speeds. Geophysical Research Letters 37: DOI:10.1029/2009GL041320.Google Scholar
Kozachek, A.V., Ekaykin, A. A., Lipenkov, V. Ya., Shibaev, Yu. A., and Vaikmäe, R.. 2011. On the relationship between climatic variability in central Antarctica and the climate of middle and low latitudes of Southern Hemisphere [in Russian]. Problems of Arctic and Antarctic 90 (4): 513.Google Scholar
Lachlan–Cope, T. A., Connolley, W.M., Turner, J., Roscoe, H.K., Marshall, G.J., Colwell, S.R., Höpfner, M. and Ingram, W.J.. 2009. Antarctic winter tropospheric warming – the potential role of polar stratospheric clouds, a sensitivity study. Atmospheric Science Letters 10: 262266.Google Scholar
Learmonth, J.A., MacLeod, C.D., Santos, M.B., Pierce, G.J., Crick, H.Q.P. and Robinson, R.A.. 2006. Potential effects of climate change on marine mammals. Oceanography and Marine Biology – An Annual Review 44: 431464.Google Scholar
Le Quéré, C., Rödenbeck, C., Buitenhuis, E.T., Conway, T. J., Langenfelds, R., Gomez, A., Labuschagne, C., Ramonet, M., Nakazawa, T., Metzl, N., Gillet, N.P. and Heimann, M.. 2007. Saturation of the Southern Ocean CO2 sink due to climate change. Science 316: 17351738.Google Scholar
Liu, J.P. and Curry, J.A.. 2010. Accelerated warming of the Southern Ocean and its impacts on the hydrological cycle and sea ice. Proceedings of the National Academy of Sciences of the United States of America 107 (34): 1498714992.Google Scholar
Martinson, D.G., Stammerjohn, S.E., Iannuzzi, R.A., Smith, R.C. and Vernet, M.. 2008. Western Antarctic Peninsula physical oceanography and spatio–temporal variability. Deep–Sea Research 55 (18–19): 19641987.Google Scholar
Matschiner, M., Hanel, R. and Salzburger, W.. 2011. On the origin and trigger of the notothenioid adaptive radiation. Plos One 6 (4). e18911: DOI:10.1371/journal.pone.0018911.Google Scholar
Marshall, G.J., Orr, A., van Lipzig, N.P.M. and King, J.C.. 2006. The impact of a changing Southern Hemisphere annular mode on Antarctic Peninsula summer temperatures. Journal of Climate 19 (20): 53885404.Google Scholar
Mayewski, P.A., Rohling, E.E., Stager, J.C., Karlen, W., Maasch, K.A., Meeker, L.D., Meyerson, E.A., Gasse, F., van Kreveld, S., Holmgren, K., Lee–Thorp, J., Rosqvist, G., Rack, F., Staubwasser, M., Schneider, R.R. and Steig, E. J.. 2004. Holocene climate variability. Quaternary Research 62: 243255.Google Scholar
Mayewski, P.A., Meredith, M.P., Summerhayes, C.P., Turner, J., Worby, A.P., Barrett, P.J., Casassa, G., Bertler, N.A.N., Bracegirdle, T.J., Naveira–Garabato, A.C., Bromwich, D. H., Campbell, H., Hamilton, G.H., Lyons, W.B., Maasch, K.A., Aoki, S. and Xiao, C.. 2009. State of the Antarctic and Southern Ocean climate system (SASOCS). Reviews of Geophysics 47, RG1003: DOI:10.1029/2007RG000231.Google Scholar
Mayewski, P.A., Maasch, K.A., Yan, Y., Kang, S., Meyerson, E., Sneed, S.B., Kaspari, S., Dixon, D., Morgan, V., van Ommen, T. and Curran, M. A. J.. 2006. Solar forcing of the polar atmosphere. Annals of Glaciology 41: 147154.Google Scholar
McClintock, J., Ducklow, H. and Fraser, W.. 2008. Ecological responses to climate change on the Antarctic Peninsula. American Scientist 96 (4): 302310.Google Scholar
McClintock, J., Angus, R.A., Mcdonald, M.R., Amsler, C.D., Catledge, S.A., and Vohra, Y.K.. 2009. Rapid dissolution of shells of weakly calcified Antarctic benthic macroorganisms indicates high vulnerability to ocean acidification. Antarctic Science 21: 449456.Google Scholar
McClintock, J.B., Amsler, M.O., Angus, R.A., Challener, R.C., Schram, J.B., Amsler, C.D., Mah, C.L., Cuce, J. and Baker, B.J.. 2011. The Mg–Calcite composition of Antarctic echinoderms: important implications for predicting the impacts of ocean acidification. Journal of Geology 119 (5): 457466.Google Scholar
McGaughran, A., Torricelli, G., Carapelli, A., Frati, F., Stevens, M.I., Convey, P. and Hogg, I.D. 2010. Contrasting phylogeographical patterns for springtails reflect different evolutionary histories between the Antarctic Peninsula and continental Antarctica. Journal of Biogeography 37: 103119.Google Scholar
McIntyre, T., Ansorge, I.J., Bornemann, H., Plotz, J., Tosh, C.A. and Bester, M.N.. 2011. Elephant seal dive behaviour is influenced by ocean temperature: implications for climate change impacts on an ocean predator. Marine Ecology–Progress Series 441: 257272.CrossRefGoogle Scholar
Meredith, M.P., Garabato, A.C.N., Hogg, A. M. and Farneti, R.. 2012. Sensitivity of the overturning circulation in the Southern Ocean to decadal changes in wind forcing. Journal of Climate 25 (1): 99110.Google Scholar
Meredith, M.P. and Hogg, A.M.. 2006. Circumpolar response of Southern Ocean eddy activity to a change in the Southern Annular Mode. Geophysical Research Letters 33: L16608: DOI:10.1029/2006GL026499.Google Scholar
Meredith, M.P. and King, J.C.. 2005. Climate change in the ocean to the west of the Antarctic Peninsula during the second half of the 20th century. Geophysical Research Letters. 32: L19606: DOI:10.1029/2005GL024042.Google Scholar
Meredith, M.P., Woodworth, P.L., Chereskin, T.K., Marshall, D.P., Allison, L.C., Bigg, G.R., Donohue, K., Heywood, K.J., Hughes, C.W., Hibbert, A., Hogg, A. McC., Johnson, H.L., Jullion, L., King, B.A., Leach, H., Lenn, Y.–D., Morales Maqueda, M.A., Munday, D.R., Naveira, A.C. Garabato, Provost, C., Sallee, J.–B. and Sprintall, J.. 2011. Sustained monitoring of the Southern Ocean at Drake Passage: past achievements and future priorities Reviews of Geophysics, 49: RG4005: DOI:10.1029/2010RG000348.CrossRefGoogle Scholar
Meyerson, E. A., Mayewski, P.A., Whitlow, S.I., Meeker, L.D., Kreutz, K.J. and Twickler, M.S.. 2002. The extratropical expression of ENSO recorded in a South Pole glaciochemical time series. Annals of Glaciology 35: 430436.Google Scholar
Monaghan, A.J., Bromwich, D.H., Fogt, R.L., Wang, S.–H., Mayewski, P.A., Dixon, D.A., Ekaykin, A., Frezzotti, M., Goodwin, I., Isaksson, E., Kaspari, S.D., Morgan, V.I., Oerter, H., van Ommen, T.D., van der Veen, C.J. and Wen, J.. 2006. Insignificant change in Antarctic snowfall since the International Geophysical Year. Science 313: 827831.Google Scholar
Montes–Hugo, M.A. and Yuan, X.. 2012. Climate patterns and phytoplankton dynamics in Antarctic latent heat polynyas. Journal of Geophysical Research.: DOI:10.1029/2010JC006597.Google Scholar
Montes–Hugo, M., Doney, S.C., Ducklow, H.W., Fraser, W., Martinson, D., Stammerjohn, S.E. and Schofield, O.. 2009. Recent changes in phytoplankton communities associated with rapid regional climate change along the western Antarctic Peninsula. Science 323 (5920): 14701473.Google Scholar
Moreau, S., Schloss, I.R., Mostajir, B., Demers, S., Almandoz, G.O., Ferrario, M.E. and Ferreyra, G.A.. 2012. Influence of microbial community composition and metabolism on air–sea ∆pCO2 variation off the western Antarctic Peninsula. Marine Ecology Progress Series 446: 4559.Google Scholar
Morley, S.A., Griffiths, H.J., Barnes, D.K.A. and Peck, L.S.. 2010. South Georgia: a key location for linking physiological capacity to distributional changes in response to climate change. Antarctic Science 22 (6): 774781.Google Scholar
Morley, S.A., Lemmon, V., Obermuller, B.E., Spicer, J.I., Clark, M.S. and Peck, L.S.. 2011. Duration tenacity: a method for assessing acclimatory capacity of the Antarctic limpet, Nacella concinna. Journal of Experimental Marine Biology and Ecology 399 (1): 3942.Google Scholar
Moy, A.D., Howard, W.R., Bray, S.G. and Trull, T.W.. 2009. Reduced calcification in modern Southern Ocean planktonic foraminifera. Nature Geoscience 2 (4): 276280.Google Scholar
Mulvaney, R., Abram, N.J., Hindmarsh, R.C.A., Arrowsmith, C., Fleet, L., Triest, J., Sime, L.C., Alemany, O., Foord, S.. 2012. Recent Antarctic Peninsula warming relative to Holocene climate and ice–shelf history. Nature 489:141144.Google Scholar
Muto, A., Scambos, T.A., Steffen, K., Slater, A.G., and Clow, G.D.. 2011. Recent surface temperature trends in the interior of East Antarctica from borehole firn temperature measurements and geophysical inverse methods. Geophysical Research Letters, 38: L15502: DOI:10.1029/2011GL048086.Google Scholar
Newsham, K.K. and Robinson, S.A.. 2009. Responses of plants in polar regions to UV–B exposure: a meta–analysis. Global Change Biology 15: 25742589.Google Scholar
Nielsen, U.N., Wall, D.H., Byron, J.A. and Ross, A.V.. 2011. Antarctic nematode communities: observed and predicted responses to climate change. Polar Biology: DOI 10.1007/s00300–011–1021–2.Google Scholar
Nowacek, D.P., Friedlaender, A.S., Halpin, P.N., Hazen, E.L., Johnston, D.W., Read, A.J., Espinasse, B., Zhou, M. and Zhu, Y.W.. 2011. Super–aggregations of krill and humpback whales in Wilhelmina Bay, Antarctic Peninsula. Plos One 6 (4) (DOI: 10.1371/journal.pone.0019173).Google Scholar
O'Donnell, R., Lewis, N., McIntyre, S. and Condon, J.. 2011. Improved methods for PCA–based reconstructions: case study using the Steig et al. (2009) Antarctic temperature reconstruction. Journal of Climate 24 (8): 20992115.Google Scholar
Orsi, A.J., Cornuelle, B.D. and Severinghaus, J.P.. 2012. Little Ice Age cold interval in West Antarctica: evidence from borehole temperature at the West Antarctic Ice Sheet (WAIS) divide, Geophysical Research Letters 39: L09710 DOI:10.1029/2012GL051260).Google Scholar
Pagani, M., Huber, M., Liu, Z.H., Bohaty, S.M., Henderiks, J., Sijp, W., Krishnan, S. and DeConto, R.M.. 2011. The role of carbon dioxide during the onset of Antarctic glaciation. Science 334 (6060): 12611264.Google Scholar
Peck, L.S., Barnes, D.K.A., Cook, A.J., Fleming, A.H. and Clarke, A.. 2009a. Negative feedback in the cold: ice retreat produces new carbon sinks in Antarctica. Global Change Biology (DOI: 10.1111/j.1365–2486.2009.02071).Google Scholar
Peck, L.S., Morley, S. and Clark, M. S.. 2009b. Animal temperature limits and ecological relevance: effects of size, activity and rates of change. Comparative Biochemistry and Physiology A–Molecular and Integrative Physiology 153A: S5757.Google Scholar
Peeters, K., Verleyen, E., Hodgson, D. A., Convey, P., Ertz, D., Vyverman, W. and Willems, A.. 2011. Heterotrophic bacterial diversity in aquatic microbial mat communities from Antarctica. Polar Biology: DOI 10.1007/s00300–00011–01100–00304.Google Scholar
Pike, J., Swann, G.E.A., Leng, M.J. and Snelling, A.M.. 2013. Glacial discharge along the west Antarctic Peninsula during the Holocene, Nature Geoscience: DOI:10.1038/ngeo1703).Google Scholar
Pollard, D. and DeConto, R.M.. 2009. Modelling West Antarctic ice sheet growth and collapse through the past five million years. Nature 458 (7236): 329332 (doi: 10.1038/nature07809).CrossRefGoogle ScholarPubMed
Pritchard, H.D., Ligtenberg, S.R.M., Fricker, H.A., Vaughan, D.G., van den Broeke, M. R. and Padman, L.. 2012. Antarctic ice–sheet loss driven by basal melting of ice shelves. Nature 502 (doi:10.1038/nature10968).Google Scholar
Purkey, S. and Johnson, G.. 2010. Warming of global abyssal and deep southern ocean waters between the 1990s and 2000s: contributions to global heat and sea level rise budgets. Journal of Climate 23: 63366351.Google Scholar
Purkey, S.G., and Johnson, G.C.. 2012. Global contraction of Antarctic Bottom Water between the 1980s and 2000s. Journal of Climate, 25: 58305844 (doi:10.1175/JCLI–D–11–00612.1).Google Scholar
Radić, V. and Hock, R.. 2011. Regionally differentiated contribution of mountain glaciers and ice caps to future sea–level rise. Nature Geoscience. 4 (2): 9194.Google Scholar
Rahmstorf, S. 2007. A semi–empirical approach to projecting future sea–level rise. Science 315 (5810): 368370.Google Scholar
Rau, F., Mauz, F., De Angelis, H., Jana, R., Neto, J.A., Skvarca, P., Vogt, S., Saurer, H. and Gossmann, H.. 2004. Variations of glacier frontal positions on the northern Antarctic Peninsula. Annals of Glaciology 39: 525530.Google Scholar
Rintoul, S.R. 2007. Rapid freshening of Antarctic Bottom Water formed in the Indian and Pacific oceans. Geophysical Research Letters 34 (6): DOI: 10.1029/2006GL028550.Google Scholar
Rose, N.L., Jones, V.J., Noon, P.E., Hodgson, D.A., Flower, R.J. and Appleby, P.G.. 2012. Long–range transport of pollutants to the Falkland Islands and Antarctica: evidence from lake sediment fly–ash particle records. Journal of Environmental Science and Technology 46: 98819889.Google Scholar
Ruckamp, M., Braun, M., Suckro, S. and Blindow, N.. 2011. Observed glacial changes on the King George Island ice cap, Antarctica, in the last decade. Global Planetary Change 79 (1–2): 99109.Google Scholar
Scambos, T.A., C. Fahnestock, Hulbe, M. and Bohlander, J.. 2000. The link between climate warming and breakup of ice shelves in the Antarctic Peninsula. Journal of Glaciology 46 (154): 516530.Google Scholar
Scheidat, M., Friedlaender, A., Kock, K.H., Lehnert, L., Boebel, O., Roberts, J. and Williams, R.. 2011. Cetacean surveys in the Southern Ocean using icebreaker–supported helicopters. Polar Biology 34 (10): 15131522.Google Scholar
Schloss, I.R., Abele, D., Moreau, S., Demers, S., Bers, A.V., Gonzalez, O. and Ferreyra, G.A.. 2012. Response of phytoplankton dynamics to 19–year (1991–2009) climate trends in Potter Cove (Antarctica). Journal of Marine Systems 92 (1): 5366.Google Scholar
Schneider, D.P., Steig, E.J., van Ommen, T.D., Dixon, D.A., Mayewski, P.A., Jones, J.M. and Bitz, C.M.. 2006. Antarctic temperatures over the past two centuries from ice cores. Geophysical Research Letters 33: DOI: 10.1029/2006GL027057.Google Scholar
Schneider, D.P., Deser, C. and Okumura, Y.. An assessment and interpretation of the observed warming of West Antarctica in the austral spring, 2012. Climate Dynamics 38 (1–2): 323347.Google Scholar
Schwarz, J.N. and Schodlock, M.P.. 2009. Impact of drifting icebergs on surface phytoplankton biomass in the Southern Ocean: ocean colour remote sensing and in situ iceberg tracking. Deep–Sea Research Part I–Oceanographic Research Papers 56: 17271741.Google Scholar
Screen, J.A. and Simmonds, I.. 2012. Half–century air temperature change above Antarctica: observed trends and spatial reconstructions, Journal of Geophysical Research 117: D16108 DOI:10.1029/2012JD017885.Google Scholar
Sen Gupta, A., Santoso, A., Taschetto, A.S., Ummenhofer, C.C., Trevena, J. and England, M.H.. 2009. Projected changes to the Southern Hemisphere ocean and sea ice in the IPCC AR4 climate models. Journal of Climate 22 (11): 30473078.CrossRefGoogle Scholar
Seppälä, A., Randall, C.E., Clilverd, M.A., Rozanov, E. and Rodger, C.J., 2009. Geomagnetic activity and polar surface level air temperature variability. Journal of Geophysical Research 114, A10312: DOI:10.1029/2008JA014029.Google Scholar
Shakun, J.D. and Carlson, A.E.. 2010. A global perspective on Last Glacial Maximum to Holocene climate change. Quaternary Science Reviews 29: 18011816.Google Scholar
Shepherd, A., Ivins, E.R., Geruo, A., Barletta, V. R., Bentley, M.J., Bettadpur, S., Briggs, K. H., Bromwich, D.H., Forsberg, R., Galin, N., Horwath, M., Jacobs, S., Joughin, I., King, M.A., Lenaerts, J.T.M., Li, J., Ligtenberg, S.R.M., Luckman, A., Luthcke, S.B., McMillan, M., Meister, R., Milne, G., Mouginot, J., Muir, A., Nicolas, J.P., Paden, J., Payne, A.J., Pritchard, H., Rignot, E., Rott, H., Sørensen, L.S., Scambos, T. A., Scheuchl, B., Schrama, E.J.O., Smith, B., Sundal, A. V., van Angelen, J.H., van de Berg, W.J., van den Broeke, M. R., Vaughan, D. G., Velicogna, I., Wahr, J., Whitehouse, P.l., Wingham, D.J., Yi, D., Young, D. and Zwally, H.J.. 2012. A reconciled estimate of ice–sheet mass balance. Science 338: 11831189.Google Scholar
Sigmond, M. and Fyfe, J.C.. 2010. Has the ozone hole contributed to increased Antarctic sea ice extent? Geophysical Research Letters 37 DOI: 10.1029/2010GL044301.Google Scholar
Simmonds, I., Keay, K. and Lim, E.P.. 2003. Synoptic activity in the seas around Antarctica. Monthly Weather Review 131: 272288.Google Scholar
Simmons, M.P. and Eliott, W.J.. 2009. Climate change and cetaceans: concerns and recent developments. Journal of the Marine Biological Association of the United Kingdom 89: 203210.Google Scholar
Siniff, D.B., Garrott, R.A., Rotella, J.J., Fraser, W.R. and Ainley, D.G.. 2008. Opinion projecting the effects of environmental change on Antarctic seals. Antarctic Science 20 (5): 425435.Google Scholar
Smith, C.R., Grange, L.J., Honig, D.L., Naudts, L., Huber, B., Guidi, L. and Domack, E.. 2012. A large population of king crabs in Palmer Deep on the west Antarctic Peninsula shelf and potential invasive impacts. Proceedings of the Royal Society B–Biological Sciences 279 (1730): 10171026.Google Scholar
Smith, W.O. and Comiso, J.C.. 2008. Influence of sea ice on primary production in the Southern Ocean: A satellite perspective. Journal of Geophysical Research – Oceans 113 (C5): DOI:10.1029/2007JC004251.Google Scholar
Sokolov, S. and Rintoul, S.R.. 2009. Circumpolar structure and distribution of the Antarctic Circumpolar Current fronts: 2. Variability and relationship to sea surface height. Journal of Geophysical Research–Oceans 114: DOI: 10.1029/2008JC005248.Google Scholar
Somero, G.N. 2012. The physiology of global change: linking patterns to mechanisms. Annual Review of Marine Science 4: 3961.Google Scholar
Stammerjohn, S., Martinson, D.G., Smith, R.C., Yuan, X. and Rind, D.. 2008. Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño–Southern Oscillation and Southern Annular Mode variability. Journal of Geophysical Research 113: (doi:10.1029/2007JC004269).Google Scholar
Steig, E.J., Ding, Q., Battisti, D.S. and Jenkins, A.. 2012. Tropical forcing of Circumpolar Deep Water inflow and outlet glacier thinning in the Amundsen Sea Embayment, West Antarctica. Annals of Glaciology 53: (doi:10.3189/2012AoG60A110).Google Scholar
Steig, E.J., Schneider, D.P., Rutherford, S.D., Mann, M.E., Comiso, J.C. and Shindell, D.T.. 2009. Warming of the Antarctic ice–sheet surface since the 1957 International Geophysical Year. Nature 457: 459462.Google Scholar
Sterken, M., Roberts, S.J., Hodgson, D.A., Vyverman, W., Balbo, A., Sabbe, K., Moreton, S.G. and Verleyen, E.. 2012. Holocene glacial and climate history of Prince Gustav Channel, northeastern Antarctic Peninsula. Quaternary Science Reviews 31: 93111.Google Scholar
Stokstad, E. 2007. Boom and bust in a polar hot zone. Science 315 (5818): 15221523.Google Scholar
Sumida, P.Y.G., Bernardino, A.F., Stedall, V.P., Glover, A.G. and Smith, C.R.. 2008. Temporal changes in benthic megafaunal abundance and composition across the West Antarctic Peninsula shelf: results from video surveys. Deep–Sea Research Part II–Topical Studies in Oceanography 55 (22–23): 24652477.Google Scholar
Thoma, M., Jenkins, A., Holland, D. and Jacobs, S.. 2008. Modelling circumpolar deep water intrusions on the Amundsen Sea continental shelf, Antarctica. Geophysics Research Letters 35 (18): 18–9–2008.Google Scholar
Thompson, D.W.J., Solomon, S., Kushner, P.J., England, M.H., Grise, K.M. and Karoly, D.J.. 2011. Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nature Geoscience 4 (11): 741749.Google Scholar
Tomasi, C., Lupi, A., Mazzola, M., Stone, R.S., Dutton, E.G., Herber, A., Radionov, V.F., Holben, B.N., Sorokin, M.G., Sakerin, S.M., Terpugova, S.A., Sobolewski, P.S., Lanconelli, C., Petkov, B.H., Busetto, M. and Vitale, V.. 2012. An update on polar aerosol optical properties using POLAR–AOD and other measurements performed during the International Polar Year. Atmospheric Environment, 52: 2947.CrossRefGoogle Scholar
Treguier, A.M., Le Sommer, J., Molines, J.M. and de Cuevas, B.. 2010. Response of the Southern Ocean to the Southern Annular Mode: Interannual variability and multidecadal trend. Journal of Physical Oceanography 40 (7): 16591668.Google Scholar
Trivelpiece, W.Z., Hinke, J.T., Miller, A.K., Reiss, C.S., Trivelpiece, S.G. and Watters, G.M.. 2011. Variability in krill biomass links harvesting and climate warming to penguin population changes in Antarctica. Proceedings of the National Academy of Sciences of the United States of America 108 (18): 76257628.CrossRefGoogle ScholarPubMed
Tschumi, T., Joos, F., Gehlen, M. and Heinze, C.. 2011. Deep ocean ventilation, carbon isotopes, marine sedimentation and the deglacial CO2 rise. Climate of the Past 7: 771800.Google Scholar
Turner, J., Colwell, S.R., Marshall, G.J., Lachlan–Cope, T.A., Carleton, A.M., Jones, P.D., Lagun, V., Reid, P.A. and Iagovkina, S.. 2005. Antarctic climate change during the last 50 years. International Journal of Climatology 25: 279294.Google Scholar
Turner, J., Lachlan–Cope, T.A., Colwell, S.R., Marshall, G.J. and Connolley, W.M.. 2006. Significant warming of the Antarctic winter troposphere. Science 311: 19141917.Google Scholar
Turner, J., Bindschadler, R.A., Convey, P., di Prisco, G., Fahrbach, E., Gutt, J., Hodgson, D.A., Mayewski, P.A. and Summerhayes, C.P. (editors). 2009a. Antarctic climate change and the environment. Cambridge: Scientific Committee on Antarctic Research.Google Scholar
Turner, J., Comiso, J.C., Marshall, G.J., Lachlan–Cope, T.A., Bracegirdle, T.J., Maksym, T., Meredith, M. P., Wang, Z. and Orr, A.. 2009b. Non–annular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice extent. Geophysical Research Letters 36: L08502 (DOI:10.1029/2009GL037524).Google Scholar
Turner, J. and Marshall, G.J.. 2011. Climate change in the polar regions. Cambridge, Cambridge University Press.Google Scholar
Turner, J., Maksym, T., Phillips, T., Marshall, G.J. and Meredith, M.P.. 2012. Impact of changes in sea ice advance on the large winter warming on the western Antarctic Peninsula. International Journal of Climatology (DOI: 10.1002/joc.3474).Google Scholar
Turner, J., Bracegirdle, T.J., Phillips, T., Marshall, G.J. and Hosking, J.S.. 2013. An initial assessment of Antarctic sea ice extent in the CMIP5 models. Journal of Climate 26: 14731484.Google Scholar
Vaughan, D.G. and Spouge, J.R.. 2002. Risk estimation of collapse of the West Antarctic ice sheet. Climatic Change 52: 6591.Google Scholar
Vermeer, M. and Rahmstorf, S.. 2009. Global sea level linked to global temperature. Proceedings of the National Academy of Science 106: 2152721532.Google Scholar
Wang, Z., Chappellaz, J., Park, K., and Mak, J.E.. 2010. Large variations in Southern Hemisphere biomass burning during the last 650 Years. Science 330 (6011): 16631666.CrossRefGoogle ScholarPubMed
Watson, S. A., Peck, L.S., Tyler, P.A., Southgate, P.C., Tan, K.S., Day, R.W. and Morley, S.A.. 2012. Marine invertebrate skeleotn size varies with latitude, temperature and carbonate saturation: implications for global change and acidification. Global change Biology 18: 30263038.Google Scholar
Whitehouse, M.J., Meredith, M.P., Rothery, P., Atkinson, A., Ward, P., Korb, R.E.. 2008. Long–term ocean warming at South Georgia, Southern Ocean: physical characteristics and implications for lower trophic levels. Deep–Sea Research 55 (10): 12181228.Google Scholar
Woodworth, P.L., Gehrels, W.R. and Nerem, R.S.. 2011. Nineteenth and twentieth century changes in sea level. Oceanography 24 (2): 8093.Google Scholar
Zagorodnov, V., Nagornov, O., Scambos, T.A., Muto, A., Mosley–Thompson, E. and Tyuflin, S.. 2012. Borehole temperatures reveal details of 20th century warming at Bruce Plateau, Antarctic Peninsula. The Cryosphere 6: (DOI:10.5194/tc–6–675–2012).CrossRefGoogle Scholar
Zhang, J. 2007. Increasing Antarctic sea ice under warming atmospheric and oceanic conditions. Journal of Climate 20: 25152529.Google Scholar