Published online by Cambridge University Press: 27 October 2009
Oriented assemblages of parallel ridges and elongated lakes are widespread on the coastal lowlands of northeast Eurasia and Arctic North America, in particular, in Alaska, Arctic Canada, and northeast Siberia. So far, only the oriented lakes have been of much scientific interest. They are believed to be formed by thermokarst in perennially frozen ice-rich sediments, while their orientation is accounted for either by impact of modern winds blowing at right angles to long axes of the lakes (when it concerns individual lakes), or by the influence of underlying bedrock structures (in the case of longitudinal and transverse alignment of lake clusters).
En masse examination of space images suggests that oriented lake-and-ridge assemblages, not the oriented lakes alone, occur in the Arctic. Hence any theory about their formation should account for the origin and orientation of the assemblages as a whole. The existing hypotheses appear inadequate for this end, so this paper proposes that the assemblages were initially created by glacial activity, that is, by ice sheets that drumlinized and tectonized their beds, as well as by sub- and proglacial meltwater, and then they were modified by thermokarst, solifluction, and aeolian processes. This assumption opens up an avenue by which all known features of oriented landforms in the Arctic can be explained. The paper suggests that the oriented landforms in Siberia and Alaska are largely signatures of a marine Arctic ice sheet that transgressed from the north, while the Baffin Island and Mackenzie Delta forms were created by the respective sectors of the Laurentide ice sheet. The oriented features discussed belong to the last Late Glacial through the Early Holocene.