Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-10T04:51:24.276Z Has data issue: false hasContentIssue false

Organochlorine residues in moss and lichen samples from two Antarctic areas

Published online by Cambridge University Press:  27 October 2009

S. Focardi
Affiliation:
Dipartimento di Biologia Ambientale, Università de Siena, Via delle Cerchia, 3-53100 Siena, Italy.
C. Gaggi
Affiliation:
Dipartimento di Biologia Ambientale, Università de Siena, Via delle Cerchia, 3-53100 Siena, Italy.
G. Chemello
Affiliation:
Dipartimento di Biologia Ambientale, Università de Siena, Via delle Cerchia, 3-53100 Siena, Italy.
E. Bacci
Affiliation:
Dipartimento di Biologia Ambientale, Università de Siena, Via delle Cerchia, 3-53100 Siena, Italy.

Abstract

Levels of some chlorinated hydrocarbon residues (HCB, HCH isomers, p,p'-DDT and related compounds, PBC congeners) in lichen and moss from Kay Island, Ross Sea, Antarctica, are reported and compared with data from similar species collected on Antarctic Peninsula. The role of the cold remote areas in the global circulation of these contaminants is briefly discussed.

Type
Articles
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atlas, E. and Giam, C.S. 1981. Global transport of organic pollutants: ambient concentrations in the remote marine atmosphere. Science 211: 163–65.CrossRefGoogle ScholarPubMed
Atlas, E. and Giam, C. S. 1988. Ambient concentrations and precipitation scavenging of atmospheric organic pollutants. Water, Air and Soil Pollution 38: 1936.CrossRefGoogle Scholar
Bacci, E., Calamari, D., Gaggi, C, Fanelli, R., Focardi, S. and Morosini, M.Chlorinated hydrocarbons in lichen and moss samples from the Antarctic Peninsula. Chemosphere 15: 747–54.CrossRefGoogle Scholar
Bacci, E., Calamari, D., Gaggi, C, Binney, C, Focardi, S. and Morosino, M. 1988. Organochlorine pesticides and PBC residues in plant foliage (Mangifera indica) from West Africa. Chemosphere 17: 693702.CrossRefGoogle Scholar
Bacci, E., Calamari, D., Gaggi, C, AND Vighi, M. 1990. Bioconcentration of organic chemical vapors in plant leaves: experimental measurements and correlation. Environmental Science Technology 24: 885–89.CrossRefGoogle Scholar
Ballschmitter, K. and Zell, M. 1980. Analysis of polychlorinated biphenyls (PCB) by glass capillary gas chromatography. Fresenius' Zeitschrift fur Analytische Chemie 302: 2031.CrossRefGoogle Scholar
Bidleman, T. F. and Olney, C. E. 1974. Chlorinated hydrocarbons in the Sargasso Sea atmosphere and surface water. Science 183: 516–18.CrossRefGoogle ScholarPubMed
Bidleman, T. F., Billings, W. N. and Foreman, W. T. 1986. Vapour-particle partitioning of semi-volatile organic compounds: estimates from field collections. Environmental Science Technology 20: 1038–43.CrossRefGoogle Scholar
Buckley, E. H. 1982. Accumulation of airborne polychlorinated biphenyls in foliage. Science 216: 520–22.CrossRefGoogle ScholarPubMed
Finney, D. J. 1971. Probit analysis: a statistical treatment of the sigmoid curve. Cambridge, Cambridge University Press.Google Scholar
Foreman, W.T. and Bidleman, T. F. 1987. An experimental sysyem for investigating vapour-particle partitioning of trace organic pollutants. Environmental Science Technology 9: 869–75.CrossRefGoogle Scholar
Gaggi, C, Bacci, E., Calamari, D. and Fanelli, R. 1985. Chlorinated hydrocarbons in plant foliage: an indication of the tropospheric contamination level. Chemosphere 14: 1673–86.CrossRefGoogle Scholar
Hermann, R. and Hubner, D. 1984. Concentrations of micropollutants (PAH, chlorinated hydrocarbons and trace metals) in the moss Hypnum cupressiformeln and around a small industrial town in southern Finland. Annales Botanici Fennici 21: 337–42.Google Scholar
Hidaka, H., Tanabe, S. and Tatsukawa, R. 1983. DDT compounds and PCB isomers and congeners in Weddell seals and their fate in the Antarctic marine ecosystem. Agricultural Biology and Chemistry 47: 2009–17.Google Scholar
Mackay, D., Paterson, S. and Schroeder, W. H.Model describing the rates of transfer processes of organic chemicals between atmosphere and water. Environmental Science Technology 20: 810–16.CrossRefGoogle Scholar
Nash, R. G. and Woolson, E. A. 1967. Persistence of chlorinated hydrocarbon insecticides in soils. Science 157: 924–27.CrossRefGoogle ScholarPubMed
Nash, R.G. and Beall, M. L 1970. Chlorinated hydrocarbon insecticides: root uptake versus vapourcontamination of soya bean foliage. Science 168: 1109–11.CrossRefGoogle Scholar
Oehme, M. and Manu, S. 1984. The long-range transport of organic pollutants to the Arctic. Fresenius'Zeitschrift fur Analytische Chemie 319: 141–46.CrossRefGoogle Scholar
Rapaport, R. A., Urban, M. R., Capel, P. D., Baker, J. E., Looney, B. B., Eisenreich, S. J. and Gorhman, E. 1985. New DDT input to North America: atmospheric deposition. Chemosphere 14: 1167–73.CrossRefGoogle Scholar
Schrimpff, E. 1984. Air pollution pattern in two cities of Colombia, SA according to trace substances content of an epiphyte (Tillandsia recurvata). Water, Air and Soil Pollution 21: 279315.CrossRefGoogle Scholar
Spencer, F. W., Farmer, W. J. and Cliath, M. M. 1973. Pesticide volatilization. Residues Review 49: 1–47.Google Scholar
Thomas, W., Ruhling, A. and Simon, H. 1984. Accumulation of airborne pollutants (PAH, chlorinated hydrocarbons, heavy metals) in various plant species and humus. Environmental Pollution A 36: 1133–38.Google Scholar
Tobin, P. 1986. Known and potential sources of hexachlorobenzene. In: Morris, C. R. and Cabral, J. R. P. (editors). Hexachlorobenzene: proceedings of an international symposium, Lyon 1986. IARC Scientific Publications 77: 311.Google Scholar
Trevors, J. T. 1986. A BASIC programme for estimating LD50 values using the IBM-PC. Bulletin of Environmental Contamination and Toxicology 37: 1826.CrossRefGoogle ScholarPubMed
Villeneuve, J. P. and Holm, E. 1984. Atmospheric background of chlorinated hydrocarbons studied in Swedish lichens. Chemosphere 13: 1133–38.CrossRefGoogle Scholar