Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-20T00:05:37.243Z Has data issue: false hasContentIssue false

Earth and space observation at the German Antarctic Receiving Station O’Higgins

Published online by Cambridge University Press:  08 October 2014

Thomas Klügel
Affiliation:
Federal Agency for Cartography and Geodesy, Richard-Strauss-Allee 11, 60598 Frankfurt/Main, Germany ([email protected])
Kathrin Höppner
Affiliation:
German Aerospace Centre, Münchener Straße 20, 82234 Weßling, Germany
Reinhard Falk
Affiliation:
Federal Agency for Cartography and Geodesy, Richard-Strauss-Allee 11, 60598 Frankfurt/Main, Germany
Elke Kühmstedt
Affiliation:
Federal Agency for Cartography and Geodesy, Richard-Strauss-Allee 11, 60598 Frankfurt/Main, Germany
Christian Plötz
Affiliation:
Federal Agency for Cartography and Geodesy, Richard-Strauss-Allee 11, 60598 Frankfurt/Main, Germany
Andreas Reinhold
Affiliation:
Federal Agency for Cartography and Geodesy, Richard-Strauss-Allee 11, 60598 Frankfurt/Main, Germany
Axel Rülke
Affiliation:
Federal Agency for Cartography and Geodesy, Richard-Strauss-Allee 11, 60598 Frankfurt/Main, Germany
Reiner Wojdziak
Affiliation:
Federal Agency for Cartography and Geodesy, Richard-Strauss-Allee 11, 60598 Frankfurt/Main, Germany
Ulrich Balss
Affiliation:
German Aerospace Centre, Münchener Straße 20, 82234 Weßling, Germany
Erhard Diedrich
Affiliation:
German Aerospace Centre, Münchener Straße 20, 82234 Weßling, Germany
Michael Eineder
Affiliation:
German Aerospace Centre, Münchener Straße 20, 82234 Weßling, Germany
Hennes Henniger
Affiliation:
German Aerospace Centre, Münchener Straße 20, 82234 Weßling, Germany
Robert Metzig
Affiliation:
German Aerospace Centre, Münchener Straße 20, 82234 Weßling, Germany
Peter Steigenberger
Affiliation:
German Aerospace Centre, Münchener Straße 20, 82234 Weßling, Germany
Christoph Gisinger
Affiliation:
Institut für Astronomische und Physikalische Geodäsie, Technische Universität München, 80290 München, Germany
Harald Schuh
Affiliation:
Deutsches GeoForschungsZentrum, Telegrafenberg, 14473 Potsdam, Germany
Johannes Böhm
Affiliation:
Department of Geodesy and Geoinformation, Vienna University of Technology, Gusshausstraße 27-29, 1040 Vienna, Austria
Roopesh Ojha
Affiliation:
National Aeronautics and Space Administration, 8800 Greenbelt Road, Greenbelt, MD 20771, U.S.A.
Matthias Kadler
Affiliation:
Institut für Theoretische Physik und Astrophysik, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
Angelika Humbert
Affiliation:
Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
Matthias Braun
Affiliation:
Institut für Geographie, Friedrich-Alexander-Universität Erlangen-Nürnberg, PB 3520, 91023 Erlangen, Germany
Jing Sun
Affiliation:
Shanghai Astronomical Observatory, 80 Nandan Road, Shanghai 200030, China

Abstract

The German Antarctic Receiving Station (GARS) O’Higgins at the northern tip of the Antarctic Peninsula is a dual purpose facility for earth observation and has existed for more than 20 years. It serves as a satellite ground station for payload data downlink and telecommanding of remote sensing satellites as well as a geodetic observatory for global reference systems and global change. Both applications use the same 9 m diameter radio antenna. Major outcomes of this usage are summarised in this paper.

The satellite ground station O’Higgins (OHG) is part of the global ground station network of the German Remote Sensing Data Centre (DFD) operated by the German Aerospace Centre (DLR). It was established in 1991 to provide remote sensing data downlink support within the missions of the European Remote Sensing Satellites ERS-1 and ERS-2. These missions provided valuable insights into the changes of the Antarctic ice shield. Especially after the failure of the on-board data recorder, OHG became an essential downlink station for ERS-2 real-time data transmission. Since 2010, OHG is manned during the entire year, specifically to support the TanDEM-X mission. OHG is a main dump station for payload data, monitoring and telecommanding of the German TerraSAR-X and TanDEM-X satellites.

For space geodesy and astrometry the radio antenna O’Higgins significantly improves coverage over the southern hemisphere and plays an essential role within the global Very Long Baseline Interferometry (VLBI) network. In particular the determination of the Earth Orientation Parameters (EOP) and the sky coverage of the International Celestial Reference Frame (ICRF) benefit from the location at a high southern latitude. Further, the resolution of VLBI images of active galactic nuclei (AGN), cosmic radio sources defining the ICRF, improves significantly when O’Higgins is included in the network. The various geodetic instrumentation and the long time series at O’Higgins allow a reliable determination of crustal motions. VLBI station velocities, continuous GNSS measurements and campaign-wise absolute gravity measurements consistently document a vertical rate of about 5 mm/a. This crustal uplift is interpreted as an elastic rebound due to ice loss as a consequence of the ice shelf disintegration in the Prince Gustav Channel in the late 1990s.

The outstanding location on the Antarctic continent and its year-around operation make GARS O’Higgins in future increasingly attractive for polar orbiting satellite missions and a vitally important station for the global VLBI network. Future plans call for the development of an observatory for environmentally relevant research. That means that the portfolio of the station will be expanded including the expansion of the infrastructure and the construction and operation of new scientific instruments suitable for long-term measurements and satellite ground truthing.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atwood, W.B. and 199 others. 2009. The large area telescope on the Fermi Gamma-ray Space Telescope mission. Astrophysical Journal 697 (2): 10711102.Google Scholar
Balss, U., Gisinger, C., Cong, X.Y., Eineder, M. and Brcic, R.. 2013a. Precise 2-D and 3-D ground target localization with TerraSAR-X. International Archives of the Photogrammetry. Remote Sensing and Spatial Information Sciences 40 (1/W1, ISPRS Hannover Workshop 2013, 21–24 May 2013, Hannover, Germany).Google Scholar
Balss, U., Cong, X.Y., Brcic, R., Rexer, M., Minet, C. and Breit, H.. 2013b. High precision measurements on the absolute localization accuracy of TerraSAR-X. Melbourne: IGARSS (Proceedings of International Geoscience and Remote Sensing Symposium (IGARSS), Melbourne, 21–26 July 2013): 4499–4502.Google Scholar
Bevis, M., Kendrick, E., Smalley, R., Dalziel, I., Caccamise, D., Sasgen, I., Helsen, M., Taylor, F. W., Zhou, H., Brown, A., Raleigh, D., Willis, M., Wilson, T. and Konfal, S.. 2009. Geodetic measurements of vertical crustal velocity in West Antarctica and the implications for ice mass balance. Geochemistry, Geophysics, Geosystems 10 (10): Q10005.Google Scholar
Böckmann, S., Artz, T., Nothnagel, A.. 2010. VLBI terrestrial reference frame contributions to ITRF2008. Journal of Geodesy 84: 201219.Google Scholar
Böhm, J., Böhm, S., Nilsson, T., Pany, A., Plank, L., Spicakova, H., Teke, K. and Schuh, H.. 2012. The new Vienna VLBI Software VieVS. In: Kenyon, S., Pacino, M.C. and Marti, U. (editors). Geodesy for planet earth. Berlin, Heidelberg, New York: Springer (International Association of Geodesy Symposia Series 136): 10071011.Google Scholar
Braun, M. and Humbert, A.. 2009. Recent retreat of Wilkins Ice Shelf reveals new insights in ice shelf break-up mechanisms. IEEE Geoscience and Remote Sensing Letters 6 (2): 263267.Google Scholar
Braun, M., Humbert, A. and Moll, A.. 2009. Changes of Wilkins Ice Shelf over the past 15 years and inferences on its stability. The Cryosphere 3: 4156.Google Scholar
Cong, X.Y., Balss, U., Eineder, M. and Fritz, T.. 2012. Imaging geodesy - centimeter-level ranging accuracy with TerraSAR-X: An update. IEEE Geoscience and Remote Sensing Letters 9 (5): 948952.Google Scholar
Cumming, I.G. and Wong, F.H.. 2005. Digital processing of synthetic aperture radar data: algorithms and implementation. London: Artech House.Google Scholar
Dietrich, R., Dach, R., Engelhardt, G., Ihde, J., Korth, W., Kutterer, H.J., Lindner, K., Mayer, M., Menge, F., Miller, H., Müller, C., Niemeier, W., Perlt, J., Pohl, M., Salbach, H., Schenke, H.W., Schöne, T., Seeber, G., Veit, A. and Völksen, C.. 2001. ITRF coordinates and plate velocities from repeated GPS campaigns in Antarctica - an analysis based on different individual solutions. Journal of Geodesy 74 (11/12): 756766.Google Scholar
Diedrich, E., Bauer, N., Metzig, R. and Schwinger, M.. 2010. Ground station network for payload data reception of German TanDEM-X mission. SpaceObs 2010, Huntsville/Alabama, 25–30 April 2010. IS THIS A JOURNAL? PAGE REFS?Google Scholar
Dow, J. M., Neilan, R.E. and Rizos, C.. 2009. The International GNSS Service in a changing landscape of global navigation satellite systems. Journal of Geodesy 83: 191198.Google Scholar
Eineder, M., Minet, C., Steigenberger, P., Cong, X.Y. and Fritz, T.. 2011. Imaging geodesy - toward centimeter-level ranging accuracy with TerraSAR-X. IEEE Transactions on Geoscience and Remote Sensing 49 (2): 661671.Google Scholar
Ekman, M. and Mäkinen, J.. 1996. Recent postglacial rebound, gravity change and mantle flow in Fennoscandia. Geophysical Journal International 126: 229234.Google Scholar
Fey, A., Gordon, D., and Jacobs, C.S. (editors). 2009. The second realization of the International Celestial Reference Frame by Very Long Baseline Interferometry, presented on behalf of the IERS/IVS working group. Frankfurt/Main: Verlag BKG (IERS technical note 35): 1–204.Google Scholar
Gisinger, C. 2012. Atmospheric corrections for TerraSAR-X derived from GNSS observations. Unpublished Masters dissertation. Munich: Technische Universität München, Institut für Astronomische und Physikalische Geodäsie,Google Scholar
Gisinger, C., Balss, U., Pail, R., Zhu, X.X., Montazeri, S., Gernhardt, S. and Eineder, M.. 2014. Precise 3D stereo localization of corner reflectors and persistent scatterers with TerraSAR-X. IEEE Transactions on Geoscience and Remote Sensing.(submitted).Google Scholar
Humbert, A. and Braun, M.. 2008. Wilkins Ice Shelf – break-up along failure zones. Journal of Glaciology 55 (188): 943944.Google Scholar
Humbert, A., Gross, D., Müller, R., Braun, M., van de Wal, R.S.W., van den Broeke, M.R., Vaughan, D.G. and van de Berg, W.J.. 2010. Deformation and failure of the ice bridge on Wilkins Ice Shelf, Antarctica. Annals of Glaciology 51 (55): 4955.Google Scholar
Ivins, E.R., James, T.S., Wahr, J., Schrama, E.J.O., Landerer, F.W. and Simon, K.M.. 2013. Antarctic contribution to sea level rise observed by GRACE with improved GIA correction. Journal of Geophysical Research: Solid Earth 118 (6): 31263141. DOI:10.1002/jgrb.50208.Google Scholar
Ivins, E.R., Watkins, M.M., Yuan, D.-N., Dietrich, R., Casassa, G. and Rülke, A.. 2011. On-land ice loss and glacial isostatic adjustment at the Drake Passage: 2003–2009. Journal of Geophysical Research: Solid Earth 116: B2403.Google Scholar
Jiang, Z., Palinkas, V., Arias, F.E., Liard, J., Merlet, S., Wilmes, H., Vitushkin, L., Robertsson, L., Tisserand, L., Pereira Dos Santos, F., Bodart, Q., Falk, R., Baumann, H., Mizushima, S., Mäkinen, J., Bilker-Koivula, M., Lee, C., Choi, I.M., Karaboce, B., Ji, W., Wu, Q., Ruess, D., Ullrich, C., Kostelecky, J., Schmerge, D., Eckl, M., Timmen, L., Le Moigne, N., Bayer, R., Olszak, T., Agren, J., Del, C. Negro, Greco, F., Diament, M., Deroussi, S., Bonvalot, S., Krynski, J., Sekowski, M., Hu, H., Wang, L.J., Svitlov, S., Germak, A., Francis, O., Becker, M., Inglis, D. and Robinson, I.. 2012. The 8th international comparison of absolute gravimeters 2009: the first key comparison (CCM.G-K1) in the field of absolute gravimetry. Metrologia 49: 666684.Google Scholar
Ma, C., Arias, E.F., Eubanks, T.M., Fey, A.L., Gontier, A.-M., Jacobs, C.S., Sovers, O.J., Archinal, B.A. and Charlot, P.. 1998. The International Celestial Reference Frame as realized by Very Long Baseline Interferometry. Astronomical Journal 116: 516546.Google Scholar
Meindl, M., Dach, R., Jean, Y. (editors). 2012. International GNSS Service. Bern: University of Bern, Astronomical Institute (technical report 2011).Google Scholar
Metzig, R., Zink, M., Krieger, G., Younis, M., Fiedler, H., Steinbrecher, U., Schulze, D., Mittermayer, J., Werner, M. and Moreira, A.. 2008. TanDEM-X: A spaceborne bistatic radar interferometer. Berlin: VDE Verlag (Proceedings. German Microwave Conference, Hamburg, 10–12 March 2008).Google Scholar
Metzig, R., Diedrich, E., Reissig, R., Schwinger, M., Riffel, F., Henniger, H. and Schättler, B.. 2011. The TanDEM-X ground station network. Vancouver: IEEE International (Proceedings of International Geoscience and Remote Sensing Symposium (IGARSS), Vancouver, 24–29 July 2011): 902–905.Google Scholar
Montenbruck, O., Hauschild, A., Hessels, U.. 2011. Characterization of GPS/GIOVE sensor stations in the CONGO network. GPS Solutions 15: 193205.Google Scholar
Müller, C., Kadler, M., Ojha, R., Wilms, J., Böck, M., Edwards, P.G., Fromm, C.M., Hase, H., Horiuchi, S., Katz, U., Lovell, J.E.J., Plötz, C., Pursimo, T., Richers, S., Ros, E., Rothschild, R.E., Taylor, G.B., Tingay, S.J. and Zensus, J.A.. 2011. Dual-frequency VLBI study of Centaurus A on sub-parsec scales. The highest-resolution view of an extragalactic jet. Astronomy and Astrophysics 530: L11L14.Google Scholar
Nilsson, T. and Haas, R.. 2010. The impact of atmospheric turbulence on geodetic very long baseline interferometry. Journal of Geophysical Research: Solid Earth 115: B03407.Google Scholar
Ojha, R. 2012. From radio with love: an overview of the role of radio observations in understanding high-energy emission from active galaxies. Journal of Physics (Conference Series) 355 (1): 012006012014.Google Scholar
Ojha, R., Fey, A.L., Charlot, P., Jauncey, D.L., Johnston, K.J., Reynolds, J.E., Tzioumis, A.K., Quick, J.F.H., Nicolson, G.D., Ellingsen, S.P., McCulloch, P.M. and Koyama, Y.. 2005. VLBI observations of southern hemisphere ICRF sources. II. Astrometric suitability based on intrinsic structure. Astronomical Journal 130: 25292540.Google Scholar
Ojha, R., Fey, A.L., Charlot, P., Johnston, K.J., Jauncey, D.L., Reynolds, J.E., Tzioumis, A.K., Lovell, J.E.J., Quick, J.F.H., Nicolson, G.D., Ellingsen, S.P., McCulloch, P.M. and Koyama, Y.. 2007. Improvement and extension of the International Celestial Reference Frame in the southern hemisphere. In: Tregoning, P. and Rizos, C. (editors). Dynamic planet - monitoring and understanding a dynamic planet with geodetic and oceanographic tools. Berlin: Springer: 616619.Google Scholar
Ojha, R., Kadler, M., Böck, M., Booth, R., Dutka, M.S., Edwards, P.G., Fey, A.L., Fuhrmann, L., Gaume, R.A., Hase, H., Horiuchi, S., Jauncey, D.L., Johnston, K.J., Katz, U., Lister, M., Lovell, J.E.J., Müller, C., Plötz, C., Quick, J.F.H., Ros, E., Taylor, G.B., Thompson, D.J., Tingay, S.J., Tosti, G., Tzioumis, A.K., Wilms, J. and Zensus, J.A.. 2010. TANAMI: tracking active galactic nuclei with austral milliarcsecond interferometry. I. First-epoch 8.4 GHz images. Astronomy and Astrophysics 519: A45A69.Google Scholar
Pany, A., Böhm, J., MacMillan, D., Schuh, H., Nilsson, T. and Wresnik, J.. 2011. Monte Carlo simulations of the impact of troposphere, clock and measurement errors on the repeatability of VLBI positions. Journal of Geodesy 85: 3950.Google Scholar
Peltier, W.R. 2004. Global glacial isostasy and the surface of the Ice-age Earth: the ICE-5G (VM2) model and GRACE. Annual Review of Earth and Planetary Sciences 32: 111149.Google Scholar
Petit, G. and Luzum, B. (editors). 2010. IERS conventions. Frankfurt: Verlag des Bundesamtes für Kartographie und Geodäsie (IERS technical note 36).Google Scholar
Petrachenko, B., Niell, A., Behrend, D., Corey, B., Boehm, J., Charlot, P., Collioud, A., Gipson, J., Haas, R., Hobiger, T., Koyama, Y., MacMillan, D., Malkin, Z., Nilsson, T., Pany, A., Tuccari, G., Whitney, A. and Wresnik, J.. 2009. Design aspects of the VLBI2010 system. Greenbelt: NASA (Progress Report of the IVS VLBI2010 Committee, IVS Annual Report 2009).Google Scholar
Rott, H., Rack, W., Nagler, T. and Skvarca, P.. 1998. Climatically induced retreat and collapse of northern Larsen Ice Shelf, Antarctic Peninsula. Annals of Glaciology 27: 8692.Google Scholar
Schlüter, W., Himwich, E., Nothnagel, A., Vandenberg, N. and Whitney, A.. 2002. IVS and its important role in the maintenance of the global reference systems. Advances in Space Research 30: 127430.Google Scholar
Schubert, A., Small, D., Jehle, M. and Meier, E.. 2012. COSMO-SkyMed, TerraSAR-X, and RADARSAT-2 geolocation accuracy after compensation for Earth system effects. Munich: IGARSS (International Geoscience and Remote Sensing Symposium (IGARSS) Proceedings, Munich 22–27 July 2012): 3301–3304.Google Scholar
Schuh, H. and Behrend, D.. 2012. VLBI: a fascinating technique for geodesy and astrometry. Journal of Geodynamics 61: 6880.Google Scholar
Sun, J., Böhm, J., Nilsson, T., Krásná, H., Böhm, S. and Schuh, H.. 2014. New VLBI2010 scheduling strategies and implications on the terrestrial reference frames. Journal of Geodesy (in press).Google Scholar
Thomas, I.D., King, M.A., Bentley, M.J., Whitehouse, P.L., Penna, N.T., Williams, S.D.P., Riva, R.E.M., Lavallee, D.A., Clarke, P.J., King, E.C., Hindmarsh, R.C.A., and Koivula, H.. 2011. Widespread low rates of Antarctic glacial isostatic adjustment revealed by GPS observations. Geophysical Research Letters 38: L22302.Google Scholar
Trüstedt, J. 2013. Multi-epoch VLBI observations of TANAMI jets. Unpublished Masters dissertation. Würzburg: Universität Würzburg, Institut für Astronomie.Google Scholar