Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-05T13:37:19.744Z Has data issue: false hasContentIssue false

Quantitative and qualitative genomic characterization of cultivated Ilex L. species

Published online by Cambridge University Press:  26 June 2014

Alexandra Marina Gottlieb*
Affiliation:
Laboratorio de Citogenética y Evolución (LaCyE), Departamento de Ecología, Genética y Evolución, Instituto IEGEBA (UBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes y Costanera Norte s/n, 4to. Piso, Pabellón II, Ciudad Universitaria, C1428EHACiudad Autónoma de Buenos Aires, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Rivadavia 1917, C1033AAJCiudad Autónoma de Buenos Aires, Argentina
Lidia Poggio
Affiliation:
Laboratorio de Citogenética y Evolución (LaCyE), Departamento de Ecología, Genética y Evolución, Instituto IEGEBA (UBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes y Costanera Norte s/n, 4to. Piso, Pabellón II, Ciudad Universitaria, C1428EHACiudad Autónoma de Buenos Aires, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Rivadavia 1917, C1033AAJCiudad Autónoma de Buenos Aires, Argentina
*
*Corresponding author. E-mail: [email protected]

Abstract

The development of modern approaches to the genetic improvement of the tree crops Ilex paraguariensis (‘yerba mate’) and Ilex dumosa (‘yerba señorita’) is halted by the scarcity of basic genetic information. In this study, we characterized the implementation of low-cost methodologies such as representational difference analysis (RDA), single-strand conformation polymorphisms (SSCP), and reverse and direct dot-blot filter hybridization assays coupled with thorough bioinformatic characterization of sequence data for both species. Also, we estimated the genome size of each species using flow cytometry. This study contributes to the better understanding of the genetic differences between two cultivated species, by generating new quantitative and qualitative genome-level data. Using the RDA technique, we isolated a group of non-coding repetitive sequences, tentatively considered as Ilex-specific, which were 1.21- to 39.62-fold more abundant in the genome of I. paraguariensis. Another group of repetitive DNA sequences involved retrotransposons, which appeared 1.41- to 35.77-fold more abundantly in the genome of I. dumosa. The genomic DNA of each species showed different performances in filter hybridizations: while I. paraguariensis showed a high intraspecific affinity, I. dumosa exhibited a higher affinity for the genome of the former species (i.e. interspecific). These differences could be attributed to the occurrence of homologous but slightly divergent repetitive DNA sequences, highly amplified in the genome of I. paraguariensis but not in the genome of I. dumosa. Additionally, our hybridization outcomes suggest that the genomes of both species have less than 80% similarity. Moreover, for the first time, we report herein a genome size estimate of 1670 Mbp for I. paraguariensis and that of 1848 Mbp for I. dumosa.

Type
Research Article
Copyright
Copyright © NIAB 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Argout, X, Salse, J, Aury, JM, Guiltinan, MJ, Droc, G, Gouzy, J, Allegre, M, Chaparro, C, Legavre, T, Maximova, SN, Abrouk, M, Murat, F, Fouet, O, Poulain, J, Ruiz, M, Roguet, Y, Rodier-Goud, M, Barbosa-Neto, JF, Sabot, F, Kudrna, D, Ammiraju, JS, Schuster, SC, Carlson, JE, Sallet, E, Schiex, T, Dievart, A, Kramer, M, Gelley, L, Shi, Z, Bérard, A, Viot, C, Boccara, M, Risterucci, AM, Guignon, V, Sabau, X, Axtell, MJ, Ma, Z, Zhang, Y, Brown, S, Bourge, M, Golser, W, Song, X, Clement, D, Rivallan, R, Tahi, M, Akaza, JM, Pitollat, B, Gramacho, K, D'Hont, A, Brunel, D, Infante, D, Kebe, I, Costet, P, Wing, R, McCombie, WR, Guiderdoni, E, Quetier, F, Panaud, O, Wincker, P, Bocs, S and Lanaud, C (2011) The genome of Theobroma cacao . Nature Genetics 43: 101108.Google Scholar
Barral, G, Poggio, L and Giberti, GC (1995) Chromosome numbers and DNA content from Ilex argentina (Aquifoliaceae). Boletín de la Sociedad Argentina de Botánica 30: 243248.Google Scholar
Belingheri, LD, Prat Kricum, SD (2000) Programa de mejoramiento genético de la yerba mate en el INTA. II Congresso Sul-americano da Erva Mate. Encantado-Brasil. Actas pp 6063.Google Scholar
Berté, KA, Beux, MR, Spada, PK, Salvador, M and Hoffmann-Ribani, R (2011) Chemical composition and antioxidant activity of yerba-mate (Ilex paraguariensis A. St.-Hil., Aquifoliaceae) extract as obtained by spray drying. Journal of Agricultural and Food Chemistry 59: 55235527.Google Scholar
Bienert, MD, Delannoy, M, Navarre, C and Boutry, M (2012) NtSCP1 from tobacco is an extracellular serine carboxypeptidase III that has an impact on cell elongation. Plant Physiology 158: 12201229.Google Scholar
Bracesco, N, Sanchez, AG, Contreras, V, Menini, T and Gugliucci, A (2011) Recent advances on Ilex paraguariensis research: mini review. Journal of Ethnopharmacology 136: 378384.Google Scholar
Cascales, J (2013) Caracterización microsatélite en poblaciones silvestres de yerba mate (Ilex paraguariensis). MSc Thesis, Universidad de Buenos Aires, Argentina, 61 pp. Google Scholar
Chen, ZJ, Phillips, RL and Rines, HW (1998) Maize DNA enrichment by representational difference analysis in a maize chromosome addition line of oat. Theoretical and Applied Genetics 97: 337344.Google Scholar
Cossu, RM, Buti, M, Giodani, T, Natali, L and Cavallini, A (2012) A computational study of the dynamics of LTR retrotransposons in the Populus trichocarpa genome. Tree Genetics and Genomes 8: 6175.Google Scholar
Doležel, J, Binarová, P and Lucretti, S (1989) Analysis of nuclear DNA content in plant cells by flow cytometry. Biologia Plantarum 31: 113120.Google Scholar
Doležel, J, Bartoš, J, Voglmayr, H and Greilhuber, J (2003) Nuclear DNA content and genome size of trout and human. Cytometry 51: 127128.Google Scholar
Filip, R, López, P, Coussio, J and Ferraro, G (1998) Mate substitutes or adulterants: study of xanthine content. Phytotherapy Research 12: 129131.Google Scholar
Filip, R, López, P, Coussio, J and Ferraro, G (1999) Phytochemical study of Ilex dumosa . Acta Horticulturae 501: 333335.Google Scholar
Filip, R, López, P, Giberti, GC, Coussio, J and Ferraro, G (2001) Phenolic compounds in seven South American Ilex species. Fitoterapia 72: 774778.Google Scholar
Gauer, L and Cavalli-Molina, S (2000) Genetic variation in natural populations of maté (Ilex paraguariensis A. St.-Hil., Aquifoliaceae) using RAPD markers. Heredity 84: 647654.Google Scholar
Giberti, GC (1989) Los parientes silvestres de la yerba mate y el problema de su adulteración. Dominguezia 7: 322.Google Scholar
Giberti, GC (2001) Diferentes aspectos del género Ilex (Aquifoliaceae). Corología, arquitectura floral, y posición sistemática. PhD Thesis, Universidad de Buenos Aires, 154 pp. Google Scholar
Giberti, GC (2011) La “yerba mate” (Ilex paraguariensis, Aquifoliaceae) en tempranos escritos rioplatenses de Bonpland y su real distribución geográfica en Sudamérica austral. Bonplandia 20: 203212.Google Scholar
Gottlieb, AM and Poggio, L (2010) Genomic screening in dioecious “yerba mate” tree (Ilex paraguariensis A. St. Hill., Aquifoliaceae) through representational difference analysis. Genetica 138: 567578.Google Scholar
Gottlieb, AM, Giberti, GC and Poggio, L (2005) Molecular analyses of the genus Ilex (Aquifoliaceae) in southern South America, evidence from AFLP and ITS sequence data. American Journal of Botany 92: 352369.Google Scholar
Gottlieb, AM, Giberti, GC and Poggio, L (2011) Evaluación del germoplasma de Ilex paraguariensis e Ilex dumosa (Aquifoliaceae). Boletín de la Sociedad Argentina de Botánica 46: 113123.Google Scholar
Grabarek, Z (2006) Structural basis for diversity of the EF-hand calcium-binding proteins. Journal of Molecular Biology 359: 509525.Google Scholar
Greizerstein, EJ, Giberti, GC and Poggio, L (2004) Cytogenetic studies of southern South American Ilex species. Caryologia 57: 1923.Google Scholar
Hall, TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acid Symposium Series 41: 9598.Google Scholar
Hammargren, J, Sundström, J, Johansson, M, Bergman, P and Knorpp, C (2007) On the phylogeny, expression and targeting of plant nucleoside diphosphate kinases. Physiologia Plantarum 129: 7989.Google Scholar
Heck, CI and de Mejia, EG (2007) Yerba Mate Tea (Ilex paraguariensis): a comprehensive review on chemistry, health implications, and technological considerations. Journal of Food Sciences 72: R138R151.Google Scholar
Kuvachieva, AA and Goffinet, AM (2002) A modification of Representational Difference Analysis, with application to the cloning of a candidate in the Reelin signalling pathway. BMC Molecular Biology 3: 6. Available at http://www.biomedcentral.com/1471-2199/3/6.Google Scholar
Li, AX and Steffens, JC (2000) An acyltransferase catalyzing the formation of diacylglucose is a serine carboxypeptidase-like protein. Proceedings of the National Academy of Sciences of the USA 97: 62096907.Google Scholar
Lin, J, Kudrna, D and Wing, RA (2011) Construction, characterization, and preliminary BAC-end sequence analysis of a bacterial artificial chromosome library of the tea plant (Camellia sinensis). Journal of Biomedicine and Biotechnology 2: 476723476731.Google Scholar
Linares Miquel, C (1997) Análisis del genomio A del género Avena mediante la variación en secuencias repetidas de ADN. PhD Thesis, Universidad de Alcalá de Henares, Madrid, Spain, 139 pp. Google Scholar
Lisitsyn, N, Lisitsyn, NM and Wigler, M (1993) Cloning the differences between two complex genomes. Science 259: 946951.Google Scholar
Lloréns, C, Futami, R, Bezemer, D and Moya, A (2008) The Gypsy Database (GyDB) of mobile genetic elements. Nucleic Acids Research 36: 3846.Google Scholar
Lloréns, C, Futami, R, Covelli, L, Dominguez-Escribá, L, Viu, JM, Tamarit, D, Aguilar-Rodríguez, J, Vicente-Ripolles, M, Fuster, G, Bernet, GP, Maumus, F, Munoz-Pomer, A, Sempere, JM, Latorre, A and Moya, A (2011) The Gypsy Database (GyDB) of mobile genetic elements: release 2.0. Nucleic Acids Research (NARESE) 39: D70D74.CrossRefGoogle ScholarPubMed
Lysák, MA and Doležel, J (1998) Estimation of nuclear DNA content in Sesleria (Poaceae). Caryologia 52: 123132.Google Scholar
Manen, J-F, Boulter, MC and Naciri-Graven, Y (2002) The complex history of the genus Ilex L. (Aquifoliaceae): evidence from the comparison of plastid and nuclear DNA sequences and from fossil data. Plant Systematics and Evolution 235: 7998.Google Scholar
Marcon, H, Domingues, D and Marino, C (2011) Identification of potential transcriptionally active Copia LTR retrotransposons in Eucalyptus . BMC Proceedings 5: P164.CrossRefGoogle Scholar
Moummou, H, Kallberg, Y, Tonfack, LB, Persson, B and van der Rest, B (2012) The plant short-chain dehydrogenase (SDR) superfamily: genome-wide inventory and diversification patterns. BMC Plant Biolology 12: 219.Google Scholar
Mugford, ST, Qi, X, Bakht, S, Hill, L, Wegel, E, Hughes, RK, Papadopoulou, K, Melton, R, Philo, M, Sainsbury, F, Lomonossoff, GP, Roy, AD, Goss, RJ and Osbourn, A (2009) A serine carboxypeptidase-like acyltransferase is required for synthesis of antimicrobial compounds and disease resistance in oats. Plant Cell 21: 24732484.Google ScholarPubMed
Nagarajan, N, Navajas-Pérez, R, Pop, M, Alam, M, Ming, R, Paterson, AH and Salzberg, SL (2008) Genome-wide analysis of repetitive elements in papaya. Tropical Plant Biology 1: 191201.Google Scholar
Neumann-Wendt, S (2005) Genética de populações em Ilex paraguariensis St. Hil. PhD Thesis, Universidade Federal do Paraná, Brazil, 165 pp. Google Scholar
Noirot, M, Barre, P, Duperray, C, Louarn, J and Hamon, S (2003) Effects of caffeine and chlorogenic acid on propidium iodide accessibility to DNA: consequences on genome size evaluation in coffee tree. Annals of Botany 92: 259264.Google Scholar
Noirot, M, Barre, P, Duperray, C, Hamon, S and De Kochko, A (2005) Investigation on the causes of stoichiometric error in genome size estimation using heat experiments: consequences on data interpretation. Annals of Botany 95: 111118.Google Scholar
Orita, M, Iwahana, H, Kanazawa, H, Hayashi, K and Sekiya, T (1989) Detection of polymorphisms of human DNA by gel electrophoresis as Single-Strand Conformation Polymorphisms. Proceedings of the National Academy of Sciences USA 86: 27662770.Google Scholar
Panaud, O, Vitte, C, Hivert, J, Muzlak, S, Talag, J, Brar, D and Sarr, A (2002) Characterization of transposable elements in the genome of rice (Oryza sativa L.) using Representational Difference Analysis (RDA). Molecular Genetics and Genomes 268: 113123.Google Scholar
Pereira, MF, Ciampi, AY, Inglis, PW, Souza, VA and Azevedo, VCR (2013) Shotgun sequencing for microsatellite identification in Ilex paraguariensis (Aquifoliaceae). Applications in Plant Sciences 1: 1200245.Google Scholar
Prat Kricun, S (2009) El registro nacional de propiedad de cultivares de la SAGPYA inscribió dos nuevas variedades de Ilex dumosa obtenidas por el INTA Cerro Azul – Misiones. Available at http://www.ife.gov.ar/articulo/716.Google Scholar
Reginatto, FH, Athayde, ML, Gosmann, G and Schenkel, EP (1999) Methylxanthines accumulation in Ilex species-caffeine and theobromine in erva-mate (Ilex paraguariensis) and other Ilex species. Journal of Brazilian Chemistry Society 10: 443446.Google Scholar
Sabot, F, Sourdille, P and Bernard, M (2004) Detecting specific repeated sequences in large, complex genomes by using representative difference analysis and double-probe verification. Plant Molecular Biology Reporter 22: 91a91j.Google Scholar
Sharma, S and Raina, SN (2005) Organization and evolution of highly repeated satellite DNA sequences in plant chromosomes. Cytogenetics and Genome Research 109: 1526.Google Scholar
Shi, C, Hu, N, Huang, H, Gao, J, Zhao, Y-J and Gao, L-Z (2012) An improved chloroplast DNA extraction procedure for whole plastid genome sequencing. PLoS ONE 7: e31468.Google Scholar
Smit, AFA, Hubley, R and Green, P (1996–2010) RepeatMasker Open-3.0. Available at http://www.repeatmasker.org.Google Scholar
Tonfack, LB, Moummou, H, Latché, A, Youmbi, E, Benichou, M, Pech, JC and Van der Rest, B (2011) The plant SDR superfamily: involvement in primary and secondary metabolism. Current Topics in Plant Biology 12: 4153.Google Scholar
Tuskan, GA, DiFazio, S, Jansson, S, Bohlmann, J, Grigoriev, I, Hellsten, U, Putnam, N, Ralph, S, Rombauts, S, Salamov, A, Schein, J, Sterck, L, Aerts, A, Bhalerao, RR, Bhalerao, RP, Blaudez, D, Boerjan, W, Brun, A, Brunner, A, Busov, V, Campbell, M, Carlson, J, Chalot, M, Chapman, J, Chen, GL, Cooper, D, Coutinho, PM, Couturier, J, Covert, S, Cronk, Q, Cunningham, R, Davis, J, Degroeve, S, Déjardin, A, Depamphilis, C, Detter, J, Dirks, B, Dubchak, I, Duplessis, S, Ehlting, J, Ellis, B, Gendler, K, Goodstein, D, Gribskov, M, Grimwood, J, Groover, A, Gunter, L, Hamberger, B, Heinze, B, Helariutta, Y, Henrissat, B, Holligan, D, Holt, R, Huang, W, Islam-Faridi, N, Jones, S, Jones-Rhoades, M, Jorgensen, R, Joshi, C, Kangasjärvi, J, Karlsson, J, Kelleher, C, Kirkpatrick, R, Kirst, M, Kohler, A, Kalluri, U, Larimer, F, Leebens-Mack, J, Leplé, JC, Locascio, P, Lou, Y, Lucas, S, Martin, F, Montanini, B, Napoli, C, Nelson, DR, Nelson, C, Nieminen, K, Nilsson, O, Pereda, V, Peter, G, Philippe, R, Pilate, G, Poliakov, A, Razumovskaya, J, Richardson, P, Rinaldi, C, Ritland, K, Rouzé, P, Ryaboy, D, Schmutz, J, Schrader, J, Segerman, B, Shin, H, Siddiqui, A, Sterky, F, Terry, A, Tsai, CJ, Uberbacher, E, Unneberg, P, Vahala, J, Wall, K, Wessler, S, Yang, G, Yin, T, Douglas, C, Marra, M, Sandberg, G, Van de Peer, Y and Rokhsar, D (2006) The genome of black cottonwood, Populus trichocarpa (Torr. and Gray). Science 313: 15961604.Google Scholar
Zoldos, V, Siljak-Yakovlev, S, Papes, D, Sarr, A and Panaud, O (2001) Representational difference analysis reveals genomic differences between Q. robur and Q. suber: implications for the study of genome evolution in the genus Quercus . Molecular Genetics and Genomes 265: 234241.Google Scholar
Supplementary material: File

Gottlieb and Poggio Supplementary Material

Supplementary Material

Download Gottlieb and Poggio Supplementary Material(File)
File 128.5 KB