Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-24T05:14:30.937Z Has data issue: false hasContentIssue false

Isolation and characterization of microsatellite markers for the red alga Porphyra umbilicalis

Published online by Cambridge University Press:  14 December 2017

Elena Varela-Álvarez*
Affiliation:
CCMAR-CIMAR, Centro de Ciências do Mar, Laboratório Associado, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
Ana C. Balau
Affiliation:
CCMAR-CIMAR, Centro de Ciências do Mar, Laboratório Associado, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
Cristina Paulino
Affiliation:
CCMAR-CIMAR, Centro de Ciências do Mar, Laboratório Associado, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
Estibaliz Berecibar
Affiliation:
Task Group for the Extension of the Continental Shelf (EMEPC). Rua Costa Pinto 165, Paço de Arcos 2770-047, Apartado 1139, Portugal
Gareth A. Pearson
Affiliation:
CCMAR-CIMAR, Centro de Ciências do Mar, Laboratório Associado, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
Ester A. Serrão
Affiliation:
CCMAR-CIMAR, Centro de Ciências do Mar, Laboratório Associado, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
*
*Corresponding author. E-mail: [email protected]

Abstract

The red algal genus Porphyra is sister to the genus Pyropia, the single most valuable marine crop in the Orient. We developed microsatellite loci for the red alga Porphyra umbilicalis, a widespread species in the Northern Atlantic. Enriched DNA libraries were constructed and 68 loci were screened for amplification and polymorphism. Seven polymorphic microsatellite markers were isolated using 44 individuals collected from four natural populations. The number of alleles per locus ranged from two to 12. Null alleles were detected in three loci. Among the markers reported, we tested also cross-amplification with two other Porphyra spp. These polymorphic microsatellite markers should be useful for investigating population genetic structure of P. umbilicalis in the North East Atlantic.

Type
Short Communication
Copyright
Copyright © NIAB 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Billote, N, Lagoda, P, Risterucci, A and Baurens, F (1999) Microsatellite enriched libraries: applied methodology for the development of SSR markers in tropical crops. Fruits 54: 277288.Google Scholar
Blouin, NA, Brodie, JA, Grossman, AC, Xu, P and Brawley, SH (2011) Porphyra: a marine crop shaped by stress. Trends in Plant Science 16: 2937.Google Scholar
Brawley, SH, Blouin, NA, Ficko-Blean, E, Wheeler, GL, Lohr, M, Goodson, HV, Jenkins, JW, Blaby-Haas, CE, Helliwell, KE, Chan, CX, Marriage, TN, Bhattacharya, D, Klein, AS, Badis, Y, Brodie, J, Cao, Y, Collén, J, Dittami, SM, Gachon, CMM, Green, BR, Karpowicz, SJ, Kim, JW, Kudahl, UJ, Lin, S, Michel, G, Mittag, M, Olson, BJSC, Pangilinan, JL, Peng, Y, Qiu, H, Shu, S, Singer, JT, Smith, AG, Sprecher, BN, Wagner, V, Wang, W, Wang, ZY, Yan, J, Yarish, C, Zäuner-Riek, S, Zhuang, Y, Zou, Y, Lindquist, EA, Grimwood, J, Barry, KW, Rokhsar, DS, Schmutz, J, Stiller, JW, Grossman, AR and Prochnik, SE (2017) Insights into the red algae and eukaryotic evolution from the genome of Porphyra umbilicalis (Bangiophyceae, Rhodophyta). Proceedings of the National Academy of Sciences of the United States of America 114: E6361–E6370. doi: 10.1073/pnas.1703088114.Google Scholar
Drew, KM (1949) Conchocelis-phase in the life-history of Porphyra umbilicalis (L.) Kutz. Nature 164: 748749.Google Scholar
Faircloth, BC (2008) MSATCOMMANDER: detection of microsatellite repeat arrays and automated, locus-specific primer design. Molecular Ecology Resources 8: 9294.Google Scholar
Glenn, TC and Schable, NA (2005) Isolating microsatellite DNA loci. In: Zimmer, EA, Roalson, EH (eds) Methods in Enzymology 395, Molecular Evolution: Producing the Biochemical Data, Part B. San Diego, CA: Academic Press, pp. 202222.Google Scholar
Hong, YK, Coury, DA, Polne-Fuller, M and Gibor, A (1992) Lithium chloride extraction of DNA from the seaweed Porphyra perforata (Rhodophyta). Journal of Phycology 28: 217220.Google Scholar
Kong, FN, Mao, YX, Yang, H, Qu, HJ, Yan, XH and Wang, L (2009) Genetic analysis of Porphyra yezoensis using microsatellite markers. Plant Molecular Biology Reporter 27: 496502.Google Scholar
Martinez, E (1990) The Conchocelis-phase of Porphyra (Rhodophyta) in the intertidal of San-Juan Island, Washington, USA. Phycologia 29: 391395.Google Scholar
Matschiner, M and Salzburger, W (2009) TANDEM: integrating automated allele binning into genetics and genomics workflows. Bioinformatics 25: 19821983.Google Scholar
Meirmans, PG and Van Tienderen, PH (2004) GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Molecular Ecology Notes 4: 792794.Google Scholar
Mitman, GG and van der Meer, JP (1994) Meiosis, blade development, and sex determination in Porphyra purpurea (Rhodophyta). Journal of Phycology 30: 147159.Google Scholar
Miura, A (1961) A new species of Porphyra and its conchocelis-phase in nature. Journal of the Tokyo University of Fisheries 47: 305311.Google Scholar
Niwa, K and Sakamoto, T (2010) Allopolyploidy in natural and cultivated populations of Porphyra (Bangiales, Rhodophyta). Journal of Phycology 46: 10971105. doi: 10.1111/j.1529-8817.2010.00897.x.Google Scholar
Rozen, S and Skaletsky, HJ (2000) PRIMER 3 on the www for general users and for biologist programmers. In: Krawetz, S, Misener, S (eds) Bioinformatics Methods and Protocols: Methods in Molecular Biology. Totowa: Humana Press, pp. 365386.Google Scholar
Sahoo, D, Tang, X and Yarish, C (2002) Porphyra—the economic seaweed as a new experimental system. Current Science 83: 13131316.Google Scholar
Sutherland, J, Lindstrom, S, Nelson, W, Brodie, J, Lynch, M, Hwang, M, Choi, H, Miyata, M, Kikuchi, N, Oliveira, MC, Farr, T, Neefus, C, Mols-Mortensen, A, Milstein, D and Müller, KM (2011) A new look at an ancient order: generic revision of the Bangiales (Rhodophyta). Journal of Phycology 47: 11311151. doi: 10.1111/j.1529-8817.2011.01052.x.Google Scholar
van Oppen, MJH, Olsen, JL and Stam, WT (1995) Genetic variation within and among North Atlantic and Baltic populations of the benthic alga Phycodrys rubens (Rhodophyta). European Journal of Phycology 30: 251260.Google Scholar
Varela-Álvarez, E, Andreakis, N, Lago-Lestón, A, Pearson, GA, Serrão, EA, Procaccini, G, Duarte, CM and Marbá, N (2006) Genomic DNA isolation from green and brown algae (Caulerpales and Fucales) for microsatellite library construction. Journal of Phycology 42: 741745.Google Scholar
Varela-Álvarez, E, Paulino, C and Serrão, EA (2017) Development and characterization of twelve microsatellite markers for Porphyra linearis Greville. Genetica 145: 127130. doi: 10.1007/s10709-016-9941-y.Google Scholar
Zuo, Z, Wang, C, Cao, X, Su, Y, Liao, L and Chen, Y (2007) Isolation and characterization of microsatellite loci from a commercial cultivar of Porphyra haitanensis. Molecular Ecology Notes 7: 522524. doi: 10.1111/j.1471-8286.2006.01642.Google Scholar
Supplementary material: File

Varela-Álvarez et al. supplementary material

Varela-Álvarez et al. supplementary materia 1

Download Varela-Álvarez et al. supplementary material(File)
File 20.5 KB