Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-05T13:35:54.279Z Has data issue: false hasContentIssue false

Genetic relationships among Prunus rootstocks for sweet cherry (Prunus avium L.) cultivars

Published online by Cambridge University Press:  27 April 2012

Z. Turkoglu
Affiliation:
Ministry of Food, Agriculture and Livestock, Atatürk Orman Çiftliği, Ankara, Turkey
A. Koc
Affiliation:
Black Sea Agricultural Research Institute, Gelemen, Samsun, Turkey
S. Ercisli*
Affiliation:
Department of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
S. Bilgener
Affiliation:
Department of Horticulture, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Turkey
M. Akbulut
Affiliation:
Rize University, Pazar Vocational School, Rize, Turkey
N. Yildirim
Affiliation:
Ankara University Biotechnology Institute, Ankara, Turkey
R. Gercekcioglu
Affiliation:
Department of Horticulture, Faculty of Agriculture, Gaziosmanpasa University, Tokat, Turkey
A. Esitken
Affiliation:
Department of Horticulture, Faculty of Agriculture, Selcuk University, Konya, Turkey
M. Gunes
Affiliation:
Department of Horticulture, Faculty of Agriculture, Gaziosmanpasa University, Tokat, Turkey
*
*Corresponding author. E-mail: [email protected]

Abstract

Sweet cherries can be grafted on a wide range of rootstocks belonging to Prunus avium, Prunus cerasus, Prunus mahaleb, Prunus angustifolia or hybrids of different Prunus species. Identification of Prunus rootstocks using morphological traits is almost impossible particularly during the dormant season. However, molecular analysis carried out on actively growing shoot tips, leaves or dormant buds provides good opportunity to reliably distinguish rootstocks. In this study, DNA was extracted from the leaves of a total of 184 sweet cherry rootstock candidates belonging to P. avium L., P. cerasus L., P. mahaleb L. and P. angustifolia L. previously selected from the north-western part of Turkey. The rootstock candidates were tested with ten simple sequence repeat (SSR) primers, developed for the Prunus genus. The primers successfully identified all rootstock candidates. The results showed that the number of alleles per locus ranged from 10 (UDAp-401, UCD-CH21 and CPSCT010) to 20 (UCD-CH31) with an average of 13.3 alleles per locus, indicating that the SSRs were highly informative. Unweighted Pair-Group Method with Arithmetic mean analysis demonstrated that P. avium accessions are closely related to P. cerasus. The reference rootstocks were clustered with their associated botanical species.

Type
Research Article
Copyright
Copyright © NIAB 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akpinar, AE, Kocal, H, Ergul, A, Kazan, K, Selli, ME, Bakir, M, Aslantas, S, Kaymak, S and Saribas, R (2010) SSR-based molecular analysis of economically important Turkish apricot cultivars. Genetics and Molecular Research 9: 324332.CrossRefGoogle ScholarPubMed
Aradhya, MK, Liana, Y, Zee, FT and Manshardt, RM (1998) Genetic variability in Macadamia. Genetic Resources and Crop Evolution 45: 1932.CrossRefGoogle Scholar
Aranzana, J, Pineda, A, Cosson, P, Dirlewanger, E, Ascasibar, J, Cipriani, G, Ryder, CD, Testolin, R, Abbott, A, King, GJ, Iezzoni, AF and Arús, P (2003) A set of simple-sequence repeat (SSR) markers covering the Prunus genome. Theoretical and Applied Genetics 106: 819825.CrossRefGoogle ScholarPubMed
Bouhadida, M, Martin, JP, Eremin, G, Pinochet, J, Moreno, MA and Gogorcena, Y (2007) Chloroplast DNA diversity in Prunus and its implication on phylogenetic relationships. Journal of the American Society for Horticultural Science 132: 670679.CrossRefGoogle Scholar
Bouhadida, M, Casas, AM, Gonzalo, MJ, Arús, P, Moreno, MA and Gogorcena, Y (2009) Molecular characterization and genetic diversity of Prunus rootstocks. Scientia Horticulturae 120: 237245.CrossRefGoogle Scholar
Bowcock, AM, Ruiz-Linares, A, Tomfohrde, J, Minch, E, Kidd, JR and Cavalli-Sforza, LL (1994) High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368: 455457.CrossRefGoogle ScholarPubMed
Cantín, CM, Pinochet, J, Gogorcena, Y and Moreno, MA (2010) Fruit quality and yield of ‘Van’ and ‘Stark Hardy Giant’ sweet cherry cultivars as influenced by grafting on different rootstocks. Scientia Horticulturae 123: 329335.CrossRefGoogle Scholar
Cheng, Z and Huang, H (2009) SSR fingerprinting Chinese peach cultivars and landraces (Prunus persica) and analysis of their genetic relationships. Scientia Horticulturae 120: 188193.CrossRefGoogle Scholar
Cipriani, G, Lot, G, Huang, WG, Marrazzo, MT, Petelunger, E and Testolin, R (1999) AC/GT and AG/CT microsatellite repeats in peach (Prunus persica (L.) Batsch): isolation, characterisation and cross-species amplification in Prunus . Theoretical and Applied Genetics 99: 6572.CrossRefGoogle Scholar
Clarke, JB and Tobutt, KR (2003) Development and characterization of polymorphic microsatellites from Prunus avium ‘Napoleon’. Molecular Ecology Notes 3: 578580.CrossRefGoogle Scholar
Dirlewanger, E, Cosson, P, Tavaud, M, Aranzana, MJ, Poizat, C, Zanetto, A, Arús, P and Laigret, F (2002) Development of microsatellite markers in peach [Prunus persica (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry, Prunus avium L. Theoretical and Applied Genetics 105: 127138.CrossRefGoogle Scholar
Dosba, F, Bernhard, R and Zanetto, A (1994) Importance des ressources génétiques des Prunus . Comptes-rendus des Seances de l'Academie d'Agriculture de France 80: 4557.Google Scholar
Downey, SL and Iezzoni, AF (2000) Polymorphic DNA markers in black cherry (Prunus serotina) are identified using sequences from sweet cherry, peach and sour cherry. Journal of the American Society for Horticultural Science 125: 7680.CrossRefGoogle Scholar
Duminil, J and Di Michele, M (2009) ‘Plant species delimitation: a comparison of morphological and molecular markers’. Plant Biosystems 143: 528542.CrossRefGoogle Scholar
Ercisli, S (2004) A short review of the fruit germplasm resources of Turkey. Genetic Resources and Crop Evolution 51: 419435.CrossRefGoogle Scholar
Ercisli, S, Agar, G, Orhan, E, Yildirim, N and Hizarci, Y (2007) Interspecific variability of RAPD and fatty acid composition of some pomegranate cultivars (Punica granatum L.) growing in Southern Anatolia Region in Turkey. Biochemical Systematics and Ecology 35: 764769.CrossRefGoogle Scholar
Ercisli, S, Agar, G, Yildirim, N, Duralija, B, Vokurka, A and Karlidag, H (2011) Genetic diversity in wild sweet cherries (Prunus avium L.) in Turkey revealed by SSR markers. Genetics and Molecular Research 10: 12111219.CrossRefGoogle Scholar
Guarino, C, Santoro, S, De Simone, L and Cipriani, G (2009) Prunus avium: nuclear DNA study in wild populations and sweet cherry cultivars. Genome 52: 320337.CrossRefGoogle ScholarPubMed
Gulen, H, Ipek, A, Ergin, S and Akcay, MA (2010) Assessment of genetic relationships among 29 introduced and 49 local sweet cherry accessions in Turkey using AFLP and SSR markers. Journal of Horticultural Science & Biotechnology 85: 427431.CrossRefGoogle Scholar
Hegedus, A, Lenart, J and Halasz, J (2012) Review of sexual incompatibility in tree fruit species: molecular interactions and evolutionary dynamics. Biologia Plantarum 56, (2): 201209.CrossRefGoogle Scholar
Holm, L-E, Loeschcke, V and Bendixen, C (2001) Elucidation of the molecular basis of a null allele in a Rainbow trout microsatellite. Marina Biotechnology 3: 555560.CrossRefGoogle Scholar
Jimenez, S, Pinochet, J, Gogorcena, Y, Betran, JA and Moreno, MA (2007) Influence of different vigour cherry rootstocks on leaves and shoots mineral composition. Scientia Horticulturae 112: 7379.CrossRefGoogle Scholar
Kacar, AY, Iezzoni, A and Cetiner, S (2005) Sweet cherry cultivar identification by using SSR markers. Journal of Biological Sciences 5: 616619.Google Scholar
Kafkas, S, Ozgen, M, Dogan, Y, Ozcan, B, Ercisli, S and Serce, S (2008) Molecular characterization of mulberry accessions in Turkey by AFLP markers. Journal of the American Society for Horticultural Science 133: 593597.CrossRefGoogle Scholar
Lacis, G, Rashal, I, Ruisa, S, Trajkovski, V and Iezzoni, AF (2009) Assessment of genetic diversity of Latvian and Swedish sweet cherry (Prunus avium L.) genetic resources collections by using SSR (microsatellite) markers. Scientia Horticulturae 121: 451457.CrossRefGoogle Scholar
Lalli, D, Abbott, AG, Zhebentyayeva, TN, Badenes, ML, Damsteegt, V, Polak, J, Krska, B and Salava, A (2008) A genetic linkage map for an apricot (Prunus armeniaca L.). BC1 population mapping plum pox virus resistance. Tree Genetics & Genomes 4: 481493.CrossRefGoogle Scholar
Messina, R, Lain, O, Marrazzo, MT, Cipriani, G and Testolin, R (2004) New set of microsatellite loci isolated in apricot. Molecular Ecology Notes 4: 432434.CrossRefGoogle Scholar
Minch, E, Ruiz-Linares, A, Goldstein, DB, Feldman, M and Cavalli-Sforza, LL (1995) Microsat (Version 1.4d): A Computer Program for Calculating Various Statistics on Microsatellite Allele Data. Stanford: Stanford University Medical Center.Google Scholar
Mnejja, M, Garcia-Mas, J, Howad, W and Arús, P (2005) Development and transportability across Prunus species of 42 polymorphic almond microsatellites. Molecular Ecology Notes 5: 531535.CrossRefGoogle Scholar
Nas, MN, Bolek, Y and Bardak, A (2011) Genetic diversity and phylogenetic relationships of Prunus microcarpa C.A. Mey. subsp. tortusa analyzed by simple sequence repeats (SSRs). Scientia Horticulturae 127: 220227.CrossRefGoogle Scholar
Paetkau, D, Calvert, W, Stirling, I and Strobeck, C (1995) Microsatellite analysis of population structure in Canadian polar bears. Molecular Ecology 4: 347354.CrossRefGoogle ScholarPubMed
Pedryc, A, Ruthner, SZ, Herman, R, Krska, B, Hegedus, A and Halasz, J (2009) Genetic diversity of apricot revealed by a set of SSR markers from linkage group G1. Scientia Horticulturae 121: 1926.CrossRefGoogle Scholar
Radunic, M, Jazbec, A, Pecina, M, Cosic, T and Pavicic, N (2011) Growth and yield of the sweet cherry (Prunus avium L.) as affected by training system. African Journal of Biotechnology 10: 49014906.Google Scholar
Rohlf, FJ (1988) NTSYS-PC Numerical Taxonomy and Multivariate Analysis System. New York: Exeter Publishing.Google Scholar
Sefc, K, Lopez, MS, Lefort, F, Botta, R, Roubelakis-Angelakis, KA, Ibanez, J, Pejic, I, Wagner, HW, Glossl, J and Steinkellner, H (2000) Microsatellites variability in grapevine cultivars from different European regions and evaluation of assignment testing to assess the geographic origin of cultivars. Theoretical and Applied Genetics 100: 498505.CrossRefGoogle Scholar
Sosinski, B, Gannavarapu, M, Hager, LD, Beck, LE, King, GJ, Ryder, CD, Rajapakse, S, Baird, WV, Ballard, RE and Abbott, AG (2000) Characterisation of microsatellite markers in peach [Prunus persica (L.) Batsch]. Theoretical and Applied Genetics 101: 421428.CrossRefGoogle Scholar
Sneath, PH and Sokal, RR (1973) Numerical Taxonomy. San Francisco, CA: Freeman.Google Scholar
Struss, D, Ahmad, R, Southwick, SM and Boritzki, M (2003) Analysis of sweet cherry (Prunus avium L.) cultivars using SSR and AFLP markers. Journal of the American Society for Horticultural Science 128: 904909.CrossRefGoogle Scholar
Szikriszt, B, Hegedus, A and Halasz, J (2011) Review of genetic diversity studies in almond (Prunus dulcis). Acta Agronomica Hungarica 59: 379395.CrossRefGoogle Scholar
Vaughan, SP and Russell, K (2004) Characterization of novel microsatellites and development of multiplex PCR for large-scale population studies in wild cherry, Prunus avium . Molecular Ecology Notes 4: 429431.CrossRefGoogle Scholar
Wagner, HW and Sefc, KM (1999) Identity 1.0. Vienna: Centre for Applied Genetics, University of Agricultural Science.Google Scholar
Wunsch, A (2009) SSR markers for fingerprinting Prunus species. Acta Horticulturae 814: 689694.CrossRefGoogle Scholar
Wunsch, A and Hormaza, JI (2002) Molecular characterisation of sweet cherry (Prunus avium L.) genotypes using peach [Prunus persica (L.) Batsch] SSR sequences. Heredity 89: 5663.CrossRefGoogle ScholarPubMed
Xuan, H, Wang, R, Buchele, M, Moller, O and Hartmann, W (2009) Microsatellite markers (SSR) as a tool to assist in identification of sweet (Prunus avium) and sour cherry (Prunus cerasus). Acta Horticulturae 839: 507514.CrossRefGoogle Scholar
Yamamoto, T, Mochida, K, Imai, T, Haji, T, Yaegaki, H, Yamaguchi, M, Matsuta, N, Ogiwara, I and Hayashi, T (2003) Parentage analysis in Japanese peaches using SSR markers. Breeding Science 53: 3540.CrossRefGoogle Scholar
Yilmaz, KU, Ercisli, S, Asma, BM, Dogan, Y and Kafkas, S (2009) Genetic relatedness in Prunus genus revealed by inter-simple sequence repeat markers. HortScience 44: 293297.CrossRefGoogle Scholar
Yilmaz, KU, Paydas-Kargi, S, Dogan, Y and Kafkas, S (2012) Genetic diversity analysis based on ISSR, RAPD and SSR among Turkish apricot germplasms in Iran Caucasian eco-geographical group. Scientia Horticulturae doi:10.1016/j.scienta.2012.02.017.CrossRefGoogle Scholar
Zamani, Z, Sarkhosh, A, Fatahi, R and Ebadi, A (2007) Genetic relationships among pomegranate genotypes studied by fruit characteristics and RAPD markers. Journal Horticultural Science and Biotechnology 82: 1118.CrossRefGoogle Scholar
Zhou, L, Kapel, F, Hampson, C, Wiersma, PA and Bakkeren, G (2002) Genetic analysis and discrimination of sweet cherry cultivars and selections using amplified fragment length polymorphism fingerprints. Journal of the American Society for Horticultural Science 127: 786792.CrossRefGoogle Scholar
Supplementary material: File

Turkoglu supplementary material

Turkoglu supplementary material

Download Turkoglu supplementary material(File)
File 187.9 KB